Pharmaceutical Research

, Volume 6, Issue 10, pp 825–832 | Cite as

Transdermal Delivery of Narcotic Analgesics: Comparative Permeabilities of Narcotic Analgesics Through Human Cadaver Skin

  • Samir D. Roy
  • Gordon L. Flynn


Relationships between the in vitro permeation rates of select narcotic analgesics through human skin and their physicochemical properties were investigated by following the permeation kinetics of six representative compounds in small diffusion cells. The relative permeability coefficients of three phenylpiperidine analogues, meperidine, fentanyl, and sufentanil, all measured on a single piece of skin, were 3.7 × 10−3, 5.6 × 10−3, and 1.2 × 10−2 cm/hr, respectively. Using membranes from the same skin section, the permeability coefficients of three opioid alkaloids, morphine, codeine, and hydromorphone, were considerably lower, at 9.3 × 10−6, 4.9 × 10−5, and 1.4 × 10−5 cm/hr, respectively. The high permeability coefficients of the former compounds are due to their highly lipophilic nature as reflected in high octanol/water partition coefficients and low solubility parameters. Generally, the permeability coefficients of the narcotics increase as the lipophilicity increases. When viewed in literature perspective, the data suggest that aqueous tissue control of transport is approached in the case of the phenylpiperidine analogues, all of which have Koctanol/water values greater than 40. Permeability coefficients of fentanyl and sufentanil were also determined as a function of pH over the pH range 7.4 to 9.4, in this instance with membranes prepared from additional samples of skin. The permeability coefficients of each drug varied less than threefold over the pH range, a behavior consistent with the highly hydrophobic natures of the compounds. The low permeability coefficients of morphine, codeine, and hydromorphone coupled with their low potencies make these drugs poor transdermal candidates. It appears that fentanyl and sufentanil can be successfully transdermally delivered.

narcotic analgesics permeability coefficients melting points solubility parameters partition coefficients cadaver skin in vitro diffusion transdermal drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Adams. In M. Weisenberg (ed.), Pain-Clinical and Experimental Perspective, C. V. Mosby, St. Louis, Mo., 1975, pp. 326–331.Google Scholar
  2. 2.
    M. J. Chatton. In M. A. Krupp and M. J. Chatton (eds.), Current Medical Diagnosis and Treatment, Lang, Los Altos, Calif., 1982, p. 9.Google Scholar
  3. 3.
    R. B. Catalano. Semin Oncol. 2:379–392 (1975).Google Scholar
  4. 4.
    A. G. Lipman. Cancer Nurs. 3:39–46 (1980).Google Scholar
  5. 5.
    J. H. Jaffe and W. R. Martin. In A. G. Goodman, L. S. Goodman, and A. Gilman, The Pharmacological Basis of Therapeutics, Macmillan, New York, 1980, pp. 494–534.Google Scholar
  6. 6.
    J. J. Bonica. In J. J. Bonica and V. Ventafridda (eds.), Advances in Pain Research and Therapy, Vol. 2, Raven Press, New York, 1974, pp. 1–12.Google Scholar
  7. 7.
    R. Houde. In J. J. Bonica and V. Ventafridda (eds.), Advances in Pain Research and Therapy, Vol. 2, Raven Press, New York, 1974, pp. 527–534.Google Scholar
  8. 8.
    R. M. Marks and E. J. Sachar. Anal. Intern. Med. 78:173–181 (1973).Google Scholar
  9. 9.
    K. M. Foley. Med. Clin. N. Am. 66:1091–1104 (1982).Google Scholar
  10. 10.
    A. S. Michaels, S. K. Chandrasekaran, and J. E. Shaw. AIChE J. 21:985–996 (1975).Google Scholar
  11. 11.
    A. H. Beckett, J. W. Gorrod, and D. C. Taylor. Pharm. Pharmacol. 24(Suppl.):65P–70P (1972).Google Scholar
  12. 12.
    S. Riegelman. Clin. Pharmacol. Ther. 16:873–883 (1974).Google Scholar
  13. 13.
    S. K. Chandrasekaran and J. E. Shah. Contemporary Topics in Polymer Science, Vol. 2, Plenum Press, New York, 1977, pp. 291–305.Google Scholar
  14. 14.
    J. E. Shaw, S. K. Chandrasekaran, A. S. Michaels, and L Taskovich. In H. I. Maibach (ed.), Animal Models in Dermatology, Churchill Livingston, London, 1975, pp. 138–146.Google Scholar
  15. 15.
    S. K. Chandrasekaran, W. Bayne, and J. E. Shaw. J. Pharm. Sci. 67:1370–1374 (1978).Google Scholar
  16. 16.
    J. E. Shaw, L. Taskovich, and S. K. Chandrasekaran. In V. A. Drill (ed.), Current Concepts in Cutaneous Toxicity, Academic Press, New York, 1980, pp. 127–133.Google Scholar
  17. 17.
    J. E. Shaw. Am. Heart J. 108:217–223 (1984).Google Scholar
  18. 18.
    M. Wolff, G. Cordes, and V. Luckow. Pharm. Res. 2:23–29 (1985).Google Scholar
  19. 19.
    S. D. Roy and G. L. Flynn. Pharm. Res. 5:580–586 (1988).Google Scholar
  20. 20.
    S. D. Roy and G. L. Flynn. Pharm. Res. 6:147–151 (1989).Google Scholar
  21. 21.
    G. L. Flynn, H. Durrheim, and W. I. Higuchi. J. Pharm. Sci. 70:52–56 (1981).Google Scholar
  22. 22.
    I. H. Blank and D. J. McAuliffe. J. Invest. Dermatol. 85:522–526 (1985).Google Scholar
  23. 23.
    G. R. Nakamura and E. L. Way. Anal. Chem. 47:775–778 (1975).Google Scholar
  24. 24.
    R. J. Scheuplein and I. H. Blank. Physiol. Rev. 51:702–747 (1971).Google Scholar
  25. 25.
    V. H. K. Li, J. R. Robinson, and V. H. L. Lee. In J. R. Robinson and V. H. L. Lee (eds.), Controlled Drug Delivery, Fundamentals and Applications (II ed.). Marcel Dekker, New York, 1987, pp. 14, 49.Google Scholar
  26. 26.
    G. L. Flynn and B. Stewart. Drug Dev. Res. 13:169–185 (1988).Google Scholar
  27. 27.
    G. L. Flynn and S. H. Yalkowsky. J. Pharm. Sci. 61:838–852 (1972).Google Scholar
  28. 28.
    R. J. Scheuplein. J. Invest. Dermatol. 47:344–346 (1986).Google Scholar
  29. 29.
    S. H. Yalkowsky and G. L. Flynn. J. Pharm. Sci. 63:1276–1280 (1974).Google Scholar
  30. 30.
    G. L. Flynn. In R. L. Bronough and H. I. Maibach (eds.), Percutaneous Absorption, Marcel Dekker, New York and Basel, 1985, p. 17.Google Scholar
  31. 31.
    R. J. Scheuplein and R. L. Bronough. In L. A. Goldsmith (ed.), Biochemistry and Physiology of the Skin, Oxford University Press, New York and Oxford, 1983, pp. 1271–1273.Google Scholar
  32. 32.
    W. J. Dunn III, S. Grigoras, and E. Johansson. In W. J. Dunn III, J. H. Block, and R. S. Pearlman (eds.), Partition Coefficient: Determination and Estimation, Pergamon, New York, 1986, pp. 26–27.Google Scholar
  33. 33.
    K. B. Sloan, S. A. M. Koach, K. G. Siver, and F. P. Flower. J. Invest. Dermatol. 87:244–252 (1986).Google Scholar
  34. 34.
    Z. Liron and S. Cohen. J. Pharm. Sci. 73:538–542 (1984).Google Scholar
  35. 35.
    T. A. Hagen and G. L. Flynn. J. Pharm. Sci. 72:409–414 (1983).Google Scholar
  36. 36.
    S.-Y. Chang, L. Moore, and Y. W. Chien. Pharm. Res. 5:718–722 (1988).Google Scholar
  37. 37.
    D. A. McClain and C. C. Hug. Clin. Pharmacol. Ther. 28:106–114 (1980).Google Scholar
  38. 38.
    R. F. Cookson. Br. J. Anaesth. 52:959 (1980).Google Scholar
  39. 39.
    W. D. White, D. J. Pearce, and J. Norman. Br. Med. J. 2:166–167 (1980).Google Scholar
  40. 40.
    M. J. Wolfe and G. K. Davies. Br. J. Anaesth. 52:357–358 (1980).Google Scholar
  41. 41.
    B. Kay. Anesthesia 36:949–951 (1981).Google Scholar
  42. 42.
    W. S. Nimmo and J. G. Todd. Br. J. Anesth. 57:250–254 (1985).Google Scholar
  43. 43.
    G. K. Gourlay, S. R. Kowalski, J. L. Plummer, M. J. Cousins, and P. J. Armstrong. Anesth. Analg. 67:329–337 (1988).Google Scholar
  44. 44.
    C. Hansch and S. Anderson. J. Org. Chem. 32:2583–2586 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Samir D. Roy
    • 1
  • Gordon L. Flynn
    • 1
  1. 1.College of PharmacyUniversity of MichiganAnn Arbor

Personalised recommendations