Advertisement

Pharmaceutical Research

, Volume 7, Issue 11, pp 1127–1133 | Cite as

Nebulization of Liposomes. I. Effects of Lipid Composition

  • Ralph W. Niven
  • Hans Schreier
Article

Abstract

A series of multilamellar liposome dispersions was prepared from lipids of soy phosphatidylcholine or hydrogenated soy phosphatidylcholine containing from 0 to 30 mol% of either cholesterol, steary-lamine, or dipalmitoyl phosphatidylglycerol. The liposome dispersions were aerosolized with a Collison nebulizer for 80 min at an output flow rate of 4.7 liters of air/min. The effects of nebulization on the vesicles were determined by monitoring the release of encapsulated 5,6-carboxyfluorescein (CF) from dispersions containing ≈200 µg of total CF, of which 93.1 ± 2.4% (N = 18) was initially encapsulated. In all experiments CF was released from the liposomes while being aerosolized, and this ranged from a mean of 12.7 ± 3.8 to 60.9 ± 1.9% of the encapsulated CF, depending upon the lipid composition. The lipid concentration in the dispersions did not affect the rate or percentage release of CF over a range of ≈0.5 to 50 mg per nebulized dispersion. If liposomes are to be used as drug carriers in an inhalation aerosol a lipid composition should be employed which will minimize the release of encapsulated drug caused by nebulization.

aerosols carboxyfluorescein liposomes multilamellar vesicles nebulizers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. P. Newman. Chest 88:152s–160s (1985).Google Scholar
  2. 2.
    G. K. Crompton. Eur. J. Resp. Dis. 63:101–104 (Suppl. 119) (1982).Google Scholar
  3. 3.
    K. Agarwal, A. Bali, and C. M. Gupta. Biochim. Biophys. Acta 856:36–40 (1986).Google Scholar
  4. 4.
    F. Szoka, Jr., and D. Papahadjopoulos. Annu. Rev. Biophys. Bioeng. 9:467–508 (1980).Google Scholar
  5. 5.
    G. Strauss and H. Hauser. Proc. Natl. Acad. Sci. 83:2422–2426 (1986).Google Scholar
  6. 6.
    L. M. Crowe, J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel. Arch. Biochem. Biophys. 242:240–247 (1985).Google Scholar
  7. 7.
    A. Jobe and M. Ikegami. Am. Rev. Resp. Dis. 136:1256–1275 (1987).Google Scholar
  8. 8.
    H. N. McCullough and R. L. Juliano. J. Nucl. Cancer Inst. 63:727–731 (1979).Google Scholar
  9. 9.
    R. L. Juliano and H. N. McCullough. J. Pharmacol. Exp. Ther. 214:381–387 (1980).Google Scholar
  10. 10.
    S. J. Farr, I. W. Kellaway, D. R. Parry-Jones, and S. G. Woolfrey. Int. J. Pharm. 26:303–316 (1985).Google Scholar
  11. 11.
    K. M. G. Taylor, G. Taylor, I. W. Kellaway, and J. Stevens. Pharm. Res. 6:633–636 (1989).Google Scholar
  12. 12.
    R. J. Debs, R. M. Straubinger, E. N. Brunette, J. M. Lin, E. J. Lin, A. B. Montgomery, D. S. Friend, and D. P. Papahadjopoulos. Am. Rev. Resp. Dis. 135:731–737 (1987).Google Scholar
  13. 13.
    B. E. Gilbert, H. R. Six, S. Z. Wilson, P. R. Wyde, and V. Knight. Antivir. Res. 9:355–365 (1988).Google Scholar
  14. 14.
    P. R. Wyde, H. R. Six, S. Z. Wilson, B. E. Gilbert, and V. Knight. Antimicrob. Agents Chemother. 32:890–895 (1988).Google Scholar
  15. 15.
    P. J. Mihalko, H. Schreier, and R. M. Abra. In G. Gregoriadis, (ed.), Liposomes as Drug Carriers, J. Wiley & Sons, London 1988, pp. 679–694.Google Scholar
  16. 16.
    A. Pettenazzo, A. Jobe, M. Ikegami, R. Abra, E. Hogue, and P. Mihalko. Am. Rev. Resp. Dis. 139:752–758 (1989).Google Scholar
  17. 17.
    R. V. Padmanabhan, R. Gudapaty, I. E. Liener, B. A. Schwartz, and J. R. Hoidal. Am. Rev. Resp. Dis. 132:164–167 (1985).Google Scholar
  18. 18.
    E. Ralston, L. M. Hjelmeland, R. D. Klausner, J. N. Weinstein, and R. Blumenthal. Biochim. Biophys. Acta 649:133–137 (1981).Google Scholar
  19. 19.
    F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos. Biochim. Biophys. Acta 557:9–23 (1979).Google Scholar
  20. 20.
    M. Sila, S. Au, and N. Weiner. Biochim. Biophys. Acta 859:165–170 (1986).Google Scholar
  21. 21.
    M. A. Urbaneja, J. L. Nieva, F. M. Goñi, and A. Alonso. Biochim. Biophys. Acta 904:337–345 (1987).Google Scholar
  22. 22.
    E. G. Bligh and W. J. Dyer. Can. J. Biochem. Phys. 37:911–917 (1959).Google Scholar
  23. 23.
    G. Rouser, S. Fleischer, and A. Yamamoto. Lipids 5:494–496 (1970).Google Scholar
  24. 24.
    K. R. May. Aerosol Sci. 4:235–243 (1973).Google Scholar
  25. 25.
    J. De Gier, J. G. Mandersloot, and L. L. M. VanDeenen. Biochim. Biophys. Acta. 150:666–675 (1965).Google Scholar
  26. 26.
    S. M. Johnson. Biochim. Biophys. Acta 307:27–41 (1989).Google Scholar
  27. 27.
    W. Curatolo, B. Sears, and L. J. Neuringer. Biochim. Biophys. Acta 817:261–270 (1985).Google Scholar
  28. 28.
    E. Mayhew, M. Ito, and R. Lazo. Exp. Cell. Res. 171:195–202 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Ralph W. Niven
    • 1
  • Hans Schreier
    • 1
  1. 1.Department of Pharmaceutics, College of PharmacyUniversity of FloridaGainesville

Personalised recommendations