Advertisement

Pharmaceutical Research

, Volume 6, Issue 6, pp 481–485 | Cite as

Pharmacokinetics and Oral Bioavailability of Scopolamine in Normal Subjects

  • Lakshmi Putcha
  • Nitza M. Cintrón
  • James Tsui
  • James M. Vanderploeg
  • William G. Kramer
Article

Abstract

The pharmacokinetics and bioavailability of scopolamine were evaluated in six healthy male subjects receiving 0.4 mg of the drug by either oral or intravenous administration. Plasma and urine samples were analyzed using a radioreceptor binding assay. After iv administration, scopolamine concentrations in the plasma declined in a biexponential fashion, with a rapid distribution phase and a comparatively slow elimination phase. Mean and SE values for volume of distribution, systemic clearance, and renal clearance were 1.4 ± 0.3 liters/kg, 65.3 ± 5.2 liters/hr, and 4.2 ± 1.4 liters/hr, respectively. Mean peak plasma concentrations were 2909.8 ± 240.9 pg/ml following iv administration and 528.6 ± 109.4 pg/ml following oral administration. Elimination half-life of the drug was 4.5 ± 1.7 hr. Bioavailability of the oral dose was variable among subjects, ranging between 10.7 and 48.2%. The variability in absorption and poor bioavailability of oral scopolamine indicate that this route of administration may not be reliable and effective.

pharmacokinetics scopolamine drug disposition motion sickness drug 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. G. Gilman, L. S. Goodman, and A. Gilman. The Pharmacological Basis of Therapeutics, 6th ed., Macmillan, New York, 1980, pp 133–136.Google Scholar
  2. 2.
    G. S. Avery (ed.). Drug Treatment, ADIS Press, New York, 1980.Google Scholar
  3. 3.
    J. E. Shaw and J. Urquhart. Trends Pharmacol. Sci. April:208–211 (1980).Google Scholar
  4. 4.
    S. K. Chandrasekaran, W. Bayne, and J. E. Shaw. J. Pharm. Sci. 67:1370–1374 (1978).Google Scholar
  5. 5.
    K. K. Pihlajamaki, J. H. Kanto, and K. M. Oksman-Caldentey. Acta Pharmacol. Toxicol. 59:259–262 (1986).Google Scholar
  6. 6.
    N. M. Cintron and Y. M. Chen. J. Pharm. Sci. 76:328–332 (1987).Google Scholar
  7. 7.
    R. D. Brown and J. E. Manno. J. Pharm. Sci. 76:328–332 (1987).Google Scholar
  8. 8.
    C. M. Metzler and N. H. Nie. NONLIN 84 User's Guide, Statistical Consultants, Lexington, Ky., 1984.Google Scholar
  9. 9.
    M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.Google Scholar
  10. 10.
    J. Kanto, R. Virtanen, E. Iisalo, K. Mäenpää, and P. Liukko. Acta Anaesth. Scand. 25:85–88 (1981).Google Scholar
  11. 11.
    C. Muir and R. Metcalfe. J. Pharm. Biomed. Anal. 1:363 (1983).Google Scholar
  12. 12.
    L. Berghem, V. Bergman, B. Schildt, and B. Sorbo. Br. J. Anaesth. 52:597 (1980).Google Scholar
  13. 13.
    M. Gibaldi, R. N. Boyes, and S. Feldman. J. Pharm. Sci. 60:1330 (1971).Google Scholar
  14. 14.
    M. D. Milne. Proc. R. Soc. Med. 58:961 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Lakshmi Putcha
    • 1
  • Nitza M. Cintrón
    • 2
  • James Tsui
    • 3
  • James M. Vanderploeg
    • 4
  • William G. Kramer
    • 5
  1. 1.KRUG International, Technology Life Sciences DivisionHouston
  2. 2.Biomedical Laboratories Branch, NASA/Johnson Space CenterHouston
  3. 3.Department of PharmaceuticsUniversity of HoustonHouston
  4. 4.Kelsey-Seybold ClinicHouston
  5. 5.Schering CorporationBloomfield

Personalised recommendations