Pharmaceutical Research

, Volume 5, Issue 5, pp 253–260 | Cite as

Free Radicals and Oxygen Toxicity

  • Douglas D. Buechter
Article

Abstract

Most organisms are constantly exposed to molecular oxygen, and this has become a requirement of life for many of them. Oxygen is not totally innocuous, however, and it has long been known to be toxic to many organisms, including humans. The deleterious effects of oxygen are thought to result from its metabolic reduction to highly reactive and toxic species, including superoxide anion radical and hydroxyl radical. Peroxidation of lipids is a major consequence of exposure to these species and the cell possesses various enzymes, including superoxide dismutase and catalase, as well as cellular antioxidants which are able to scavenge oxygen free radicals and repair peroxidized lipids. These aspects of oxygen toxicity are reviewed, as well as the involvement of oxygen free radicals in the toxicity of the herbicide paraquat.

oxygen free radicals lipid peroxidation superoxide dismutase catalase paraquat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Haugaard. Physiol. Rev. 48:311–371 (1968).Google Scholar
  2. 2.
    R. G. Cutler. In W. A. Pryor (ed.), Free Radicals in Biology, Academic Press, New York, 1984, Vol. 6, pp. 371–428.Google Scholar
  3. 3.
    D. Harman. J. Am. Geriatr. Soc. 17:721–735 (1969).Google Scholar
  4. 4.
    H. Nohl and D. Hegner. Eur. J. Biochem. 82:563–567 (1978).Google Scholar
  5. 5.
    W. G. Harrelson and R. P. Mason. Mol. Pharmacol. 22:239–242 (1982).Google Scholar
  6. 6.
    M. R. Boyd, A. W. Stiko, and H. A. Sasame. Biochem. Pharmacol. 28:601–606 (1979).Google Scholar
  7. 7.
    R. A. Floyd. In W. A. Pryor (ed.), Free Radicals in Biology, Academic Press, New York, 1980, Vol. 4, pp. 187–208.Google Scholar
  8. 8.
    J. A. Badway and M. L. Karnovsky. Ann. Rev. Biochem. 49:695–726 (1980).Google Scholar
  9. 9.
    B. M. Babior, J. T. Curnette, and R. S. Kipnes. J. Lab. Clin. Med. 85:235–244 (1975).Google Scholar
  10. 10.
    P. M. Mewberne and V. Suphakarn. Nutr. and Cancer. 5:107–119 (1983).Google Scholar
  11. 11.
    W. Lohmann, K. G. Bensch, H. Sapper, A. Pleyer, J. Schreiber, S. O. Kang, H. Loffler, H. Pralle, K. Schwemmie, and R. D. Filler. In D. C. H. McBrien and T. F. Slater (eds.), Free Radicals, Lipid Peroxidation and Cancer, Academic Press, New York, 1982, pp. 55–73.Google Scholar
  12. 12.
    I. Fridovich. In A. P. Autor (ed.), Pathology of Oxygen, Academic Press, New York, 1982, pp. 1–9.Google Scholar
  13. 13.
    A. J. Paine. Biochem. Pharmacol. 27:1805–1813 (1978).Google Scholar
  14. 14.
    L. L. Ingraham and D. L. Meyer. Biochemistry of Dioxygen, Plenum Press, New York, 1985.Google Scholar
  15. 15.
    I. Fridovich. In O. Hayaishi and K. Asada (eds.), Biochemical and Medical Aspects of Active Oxygen, University Park Press, Baltimore, 1977, p. 4.Google Scholar
  16. 16.
    P. F. Knowles, J. F. Gibson, and R. C. Bray. Biochem J. 111:53–58 (1969).Google Scholar
  17. 17.
    B. Chance, H. Sies, and A. Boveris. Physiol. Rev. 59:527–605 (1979).Google Scholar
  18. 18.
    M. Ingelman-Sundberg and I. Johansson. J. Biol. Chem. 259:6447–6458 (1984).Google Scholar
  19. 19.
    B. Halliwell and J. M. C. Gutteridge. Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 1985.Google Scholar
  20. 20.
    H. P. Misra and I. Fridovich. J. Biol. Chem. 247:6960–6962 (1972).Google Scholar
  21. 21.
    D. T. Sawyer and J. S. Valentine. Accts. Chem. Res. 14:393–400 (1981).Google Scholar
  22. 22.
    M. A. Pathak and P. C. Joshi. Biochim. Biophys. Acta 798:115–126 (1984).Google Scholar
  23. 23.
    R. B. Johnston, Jr. and S. Kitagawa. Fed. Proc. 44:2927–2932 (1985).Google Scholar
  24. 24.
    J. M. McCord. Science 185:529–531 (1974).Google Scholar
  25. 25.
    K. Lund Olesen and K. B. Menander. Curr. Therapeut. Res. 16:706–717 (1974).Google Scholar
  26. 26.
    J. M. McCord and E. D. Day. FEBS Lett. 86:139–142 (1978).Google Scholar
  27. 27.
    S. D. Aust, and B. A. Svingen. In W. A. Pryor (ed.), Free Radicals in Biology, Academic Press, New York, 1982, Vol. 5, pp. 1–28.Google Scholar
  28. 28.
    K. Sehested, O. L. Rasmussen, and H. J. Fricke. J. Phys. Chem. 72:626–631 (1968).Google Scholar
  29. 29.
    L. A. Morehouse, M. Tien, J. R. Bucher, and S. D. Aust. Biochem. Pharmacol. 32:123–127 (1983).Google Scholar
  30. 30.
    O. Beloqui and A. I. Cederbaum. Biochem. Pharmacol. 35:2663–2669 (1986).Google Scholar
  31. 31.
    J. M. McCord and I. Fridovich. J. Biol. Chem. 244:6049–6055 (1969).Google Scholar
  32. 32.
    H. Markowitz, G. E. Cartwright and M. M. Wintrobe. J. Biol. Chem. 234:40–45 (1959).Google Scholar
  33. 33.
    B. G. Malmstrom, L.-E. Andreasson, and B. Reinhammar, In P. D. Boyer (ed.), The Enzymes, Academic Press, New York, 1975, Third Ed, Vol. 12, pp. 507–580.Google Scholar
  34. 34.
    J. M. McCord and I. Fridovich. J. Biol. Chem. 245:1374–1377 (1970).Google Scholar
  35. 35.
    J. M. McCord, B. B. Keele, and I. Fridovich. Proc. Natl. Acad. Sci. (USA) 68:1024–1027 (1971).Google Scholar
  36. 36.
    I. Fridovich. Ann. Rev. Biochem. 44:147–159 (1975).Google Scholar
  37. 37.
    M. Pick, J. Rabani, F. Yost, and I. Fridovich. J. Am. Chem. Soc. 96:7329–7333 (1974).Google Scholar
  38. 38.
    R. A. Weisiger and I. Fridovich. J. Biol. Chem. 248:3582–3592 (1973).Google Scholar
  39. 39.
    H. M. Hassan and I. Fridovich. J. Bacteriol. 129:1574–1583 (1977).Google Scholar
  40. 40.
    E. M. Gregory, F. J. Yost, and I. Fridovich. J. Bacteriol. 115:987–991 (1973).Google Scholar
  41. 41.
    E. M. Gregory and I. Fridovich. J. Bacteriol. 114:543–548 (1973).Google Scholar
  42. 42.
    E. M. Gregory and I. Fridovich. J. Bacteriol. 114:1193–1197 (1973).Google Scholar
  43. 43.
    E. M. Gregory, S. A. Goscin, and I. Fridovich. J. Bacteriol. 117:456–460 (1974).Google Scholar
  44. 44.
    C. deDuve. Proc. Roy. Soc. B. 173:71–83 (1969).Google Scholar
  45. 45.
    S. L. Marklund, N. G. Westmann, E. Lundgren, and G. Roos. Cancer Res. 42:1955–1961 (1982).Google Scholar
  46. 46.
    C. M. Redman, D. J. Grab, and R. Irukulla. Arch. Biochem. Biophys. 152:496–501 (1972).Google Scholar
  47. 47.
    R. S. Holmes and C. J. Masters. Int. J. Biochem. 1:474–482 (1970).Google Scholar
  48. 48.
    G. R. Schonbaum and B. Chance. In P. D. Boyer (ed.), The Enzymes, Academic Press, New York, 1976, Vol. 13, pp. 363–408.Google Scholar
  49. 49.
    G. C. Mills. J. Biol. Chem. 229:189–197 (1957).Google Scholar
  50. 50.
    G. C. Mills. J. Biol. Chem. 234:502–506 (1959).Google Scholar
  51. 51.
    N. S. Kosower and E. M. Kosower. Int. Rev. Cytology 54:109–160 (1978).Google Scholar
  52. 52.
    C. Little and P. J. O'Brien. Biochem. Biophys. Res. Commun. 31:145–150 (1969).Google Scholar
  53. 53.
    E. E. Conn and B. Vennesland. J. Biol. Chem. 192:17–28 (1951).Google Scholar
  54. 54.
    I. Fridovich. In A. P. Autor (ed.), Pathology of Oxygen, Academic Press, New York, 1982, p. 4.Google Scholar
  55. 55.
    L. K. Dahle, E. G. Hill, and R. T. Holman. Arch. Biochem. Biophys. 98:253–261 (1962).Google Scholar
  56. 56.
    C. A. Riely, G. Cohen, and M. Lieberman. Science. 183:208–212 (1974).Google Scholar
  57. 57.
    J. E. Biaglow, M. E. Varnes, E. P. Clark, and E. R. Epp. Rad. Res. 95:437–455 (1983).Google Scholar
  58. 58.
    A. Beneditti, M. Comparti, and H. Esterbauer. Biochim. Biophys. Acta. 620:281–296 (1980).Google Scholar
  59. 59.
    H. Esterbauer. In D. C. H. McBrien and T. F. Slater (eds.), Free Radicals, Lipid Peroxidation and Cancer, Academic Press, New York, 1982, pp. 101–128.Google Scholar
  60. 60.
    J. M. Gutteridge and G. J. Quinlan. J. Appl. Biochem. 5:293–299 (1983).Google Scholar
  61. 61.
    P. J. O'Brien. Can. J. Biochem. 47:485–492 (1969).Google Scholar
  62. 62.
    E. D. Wills. Biochem. J. 113:333–341 (1969).Google Scholar
  63. 63.
    M. U. Dianzani. In D. C. H. McBrien and T. F. Slater (eds.), Free Radicals, Lipid Peroxidation and Cancer, Academic Press, New York, 1982, pp. 129–158.Google Scholar
  64. 64.
    G. Czapski and L. M. Dorfman. J. Phys. Chem. 68:1169–1177 (1964).Google Scholar
  65. 65.
    J. M. C. Gutteridge, R. Richmond, and B. Halliwell. Biochem. J. 184:469–472 (1979).Google Scholar
  66. 66.
    B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein. Proc. Natl. Acad. Sci. (USA) 78:6858–6862 (1981).Google Scholar
  67. 67.
    K. Fong, P. B. McCay, J. L. Poyer, B. B. Keele, and H. Misra, J. Biol. Chem. 248:7792–7797 (1973).Google Scholar
  68. 68.
    A. Bast and M. H. M. Sleeghs. Experientia 42:555–556 (1986).Google Scholar
  69. 69.
    R. Bredehorst, M. Panneerselvan, and C. Vogel. J. Biol. Chem. 262:2034–2041 (1987).Google Scholar
  70. 70.
    A. Samuni, J. Aronovitch, D. Godinger, M. Chevion, and G. Czapski. Eur. J. Biochem. 137:119–124 (1983).Google Scholar
  71. 71.
    D. R. Kearns. Chem. Rev. 71:395–427 (1971).Google Scholar
  72. 72.
    A. U. Khan and M. Kasha. J. Phys. Chem. 67:2105–2106 (1963).Google Scholar
  73. 73.
    A. U. Khan and M. Kasha. J. Am. Chem. Soc. 88:1574–1576 (1966).Google Scholar
  74. 74.
    M. Nakano, T. Noguchi, K. Sugioka, H. Fukuyama, M. Sato, Y. Shimizu, Y. Tsuji, and H. Inaba. J. Biol. Chem. 250:2404–2406 (1975).Google Scholar
  75. 75.
    M. M. King, E. K. Lai, and P. B. McKay. J. Biol. Chem. 250:6496–6502 (1975).Google Scholar
  76. 76.
    N. I. Krinsky. Trends Biochem. Sci. 2:35–38 (1977).Google Scholar
  77. 77.
    M. Botsivali and D. F. Evans. J. Chem. Soc. Chem. Commun. 1114–1116 (1979).Google Scholar
  78. 78.
    C. S. Foote and R. W. Denny. J. Am. Chem. Soc. 90:6233–6235 (1968).Google Scholar
  79. 79.
    J. S. Bus, S. Z. Cagen, M. Olgaard, and J. R. Gibson. Toxicol. Appl. Pharmacol. 35:501–513 (1976).Google Scholar
  80. 80.
    P. B. Merkel, R. Nilsson, and D. R. Kearns. J. Am. Chem. Soc. 94:1030–1031 (1972).Google Scholar
  81. 81.
    R. Nilson and D. R. Kearns. J. Phys. Chem. 78:1681–1683 (1974).Google Scholar
  82. 82.
    A. A. Barber and F. Bernheim. Adv. Geront. Res. 2:355–403 (1967).Google Scholar
  83. 83.
    L. Garby and J. Neldon (eds.), The Respiratory Functions of Blood, Plenum Medical Book Company, New York, 1977.Google Scholar
  84. 84.
    J. M. C. Gutteridge. Res. Comm. Chem. Path. Pharmacol. 22:563–572 (1978).Google Scholar
  85. 85.
    J. A. Lucy. Ann. N. York Acad. Sci. 203:4–11 (1972).Google Scholar
  86. 86.
    N. Brot and H. Weissbach. Arch. Biochem. Biophys. 223:271–281 (1983).Google Scholar
  87. 87.
    G. W. Burton and K. U. Ingold. Acc. Chem. Res. 19:194–201 (1986).Google Scholar
  88. 88.
    E. Niki, Y. Yamamoto, and Y. Kamiya. In W. Bors, M. Saran, and D. Tait (eds.), Oxygen Radicals in Chemistry and Biology, Walter de Gruyter, Berlin, 1984, pp. 273–280.Google Scholar
  89. 89.
    J. E. Packer, T. F. Slater, and R. L. Willson. Nature 278:737–738 (1979).Google Scholar
  90. 90.
    T. Doba, G. W. Burton, and K. U. Ingold. Biochim. Biophys. Acta. 835:298 (1985).Google Scholar
  91. 91.
    G. R. Sagar. Hum. Toxicol. 6:7–11 (1987).Google Scholar
  92. 92.
    P. Smith and D. Heath. CRC Crit. Rev. Toxicol. 4:411–445 (1976).Google Scholar
  93. 93.
    L. J. Onyon and G. N. Volans. Hum. Toxicol. 6:19–29 (1987).Google Scholar
  94. 94.
    C. W. Sharp, A. Ottolenghi, and H. J. Posner. Toxicol. Appl. Pharmacol. 22:241–251 (1972).Google Scholar
  95. 95.
    P. Smith, D. Heath, and J. M. Kay. J. Pathol. 114:57–67 (1974).Google Scholar
  96. 96.
    W. J. Waddell and C. Marlowe. Tox. Appl. Pharmacol. 56:127–140 (1980).Google Scholar
  97. 97.
    H. M. Hassan and I. Fridovich. J. Biol. Chem. 254:10846–10852 (1979).Google Scholar
  98. 98.
    J. A. Farrington, M. Ebert, E. J. Land, and K. Fletcher. Biochim. Biophys. Acta. 314:372–381 (1973).Google Scholar
  99. 99.
    A. J. Bard, A. Ledwith, and H. J. Shine. Adv. Phys. Org. Chem. 13:115–278 (1976).Google Scholar
  100. 100.
    R. W. Miller and F. D. H. McDowell. Biochim. Biophys. Acta. 387:176–187 (1975).Google Scholar
  101. 101.
    J. R. Harbour and J. R. Bolten. Biochem. Biophys. Res. Commun. 64:803–807 (1975).Google Scholar
  102. 102.
    M. R. Montgomery. Res. Comm. Chem. Pathol. Pharmacol. 16:155–158 (1977).Google Scholar
  103. 103.
    N. Watanabe, S. Yasuko, M. Nobuhiro, S. Yasushi, and S. Yoshida. Biochim. Biophys. Acta. 883:420–425 (1986).Google Scholar
  104. 104.
    J. S. Bus, S. D. Aust, and J. E. Gibson. Biochem. Biophys. Res. Commun. 58:749–755 (1974).Google Scholar
  105. 105.
    R. D. Situnayake, B. J. Crump, D. I. Thurnham, J. A. Davies, and M. Davis. Hum. Toxicol. 6:94–98 (1987).Google Scholar
  106. 106.
    M. A. Thrush, E. G. Mimnaugh, E. Ginsburg, and T. E. Gram. Biochem. Pharmacol. 31:805–814 (1982).Google Scholar
  107. 107.
    M. F. Kenel, L. L. Bestervelt, and A. P. Kulkarni. Gen. Pharmacol. 18:373–378 (1987).Google Scholar
  108. 108.
    M. A. Thrush, E. G. Mimnaugh, E. Ginsburg, and T. E. Gram. Toxicol. Appl. Pharmacol. 60:279–286 (1981).Google Scholar
  109. 109.
    J. S. Bus, S. D. Aust, and J. E. Gibson. Res. Commun. Chem. Path. Pharmacol. 11:31–38 (1975).Google Scholar
  110. 110.
    A. P. Autor. Life Sci. 14:1309–1319 (1974).Google Scholar
  111. 111.
    H. M. Hassan and I. Fridovich. J. Biol. Chem. 253:8143–8148 (1978).Google Scholar
  112. 112.
    H. M. Hassan and I. Fridovich. J. Biol. Chem. 252:7667–7672 (1977).Google Scholar
  113. 113.
    J. R. Schiavone and H. M. Hassan. FEMS Microbiol. Letts. 42:33–38 (1987).Google Scholar
  114. 114.
    L. Frank. Biochem. Pharm. 30:2319–2324 (1981).Google Scholar
  115. 115.
    H. K. Fisher, J. A. Clements, and R. R. Wright. Am. Rev. Resp. Dis. 107:246–252 (1973).Google Scholar
  116. 116.
    R. F. Minchin. Chem. Biol. Interaact. 61:139–149 (1987).Google Scholar
  117. 117.
    H. Shu, R. E. Talcott, S. A. Rice, and E. T. Wei. Biochem. Pharmacol. 28:327–331 (1979).Google Scholar
  118. 118.
    J. M. Cassady and J. D. Douros (eds.). Anticancer Agents Based On Natural Models, Academic Press, New York, 1980.Google Scholar
  119. 119.
    H. W. Gardner. J. Agric. Food Chem. 27:220–229 (1979).Google Scholar
  120. 120.
    K. J. A. Davies. J. Biol. Chem. 262:9895–9901 (1987).Google Scholar
  121. 121.
    K. J. A. Davies. J. Biol. Chem. 262:9902–9907 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Douglas D. Buechter
    • 1
  1. 1.Department of Pharmaceutical ChemistryUniversity of CaliforniaSan Francisco

Personalised recommendations