Redox signaling


Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have recently been shown to be involved in a multiplicity of physiological responses through modulation of signaling pathways. Some of the specific signaling components altered by reactive oxygen and nitrogen species (RONS) have begun to be identified. We will discuss RONS signaling by detailing the chemistry of signaling, the roles of antioxidant enzymes as signaling components, thiol chemistry in the specificity of RONS signaling, NO-heme interactions, and some do's and don'ts of redox signal research. The principal points raised are that: (1) as with classic signaling pathways, signaling by RONS is regulated; (2) antioxidant enzymes are essential 'turn-off' components in signaling; (3) spatial relationships are probably more important in RONS signaling than the overall 'redox state' of the cell; (4) deprotonation of cysteines to form the thiolate, which can react with RONS, occurs in specific protein sites providing specificity in signaling; (5) although multiple chemical mechanisms exist for producing nitrosothiols, their formation in vivo remains unclear; and (6) caution should be taken in the use of 'antioxidants' in signal transduction.

This is a preview of subscription content, log in to check access.


  1. 1.

    Sutherland EW, Rall TW, Menon T: Adenyl cyclase I. Distribution, preparation and properties. J Biol Chem 237: 1220–1227, 1962

  2. 2.

    Rodbell M, Birnbaumer L, Pohl SL, Krans HM: The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem 246: 1877–1882, 1971

  3. 3.

    Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG: Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77: 6516–6520, 1980

  4. 4.

    Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y: Unsaturated diacylglycerol as a possible messenger for the activation of calciumactivated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun 91: 1218–1224, 1979

  5. 5.

    Streb H, Irvine RF, Berridge MJ, Schulz I: Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69, 1983

  6. 6.

    Arnold WP, Mittal CK, Katsuki S, Murad F: Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203–3207, 1977

  7. 7.

    Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, Ignarro L: Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res 5: 211–224, 1979

  8. 8.

    Rhee SG: Redox signaling: Hydrogen peroxide as intracellular messenger. Exp Mol Med 31: 53–59, 1999

  9. 9.

    Claiborne A, Yeh JI, Mallett, TC, Luba J, Crane EJ, Charrier V: Parsonage, D: Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38: 15407–15416, 1999

  10. 10.

    Sawyer DT: In: Oxygen Chemistry. Oxford University Press, New York, 1991

  11. 11.

    Boveris A, Cadenas E: Cellular sources and steady-state levels of reactive oxygen species. In: L.B. Clerch, D.J. Massaro (eds). Oxygen, Gene Expression, and Cellular Function. Marcel Dekker, New York, 1997, pp 1–25

  12. 12.

    Babior BM: NADPH oxidase: An update. Blood 93: 1464–1476, 1999

  13. 13.

    Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman, G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D: Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97: 4654–4659, 2000

  14. 14.

    Babior BM: The NADPH oxidase of endothelial cells. IUBMB Life 50, 267–269, 2000

  15. 15.

    Dinauer MC, Deck MB, Unanue ER: Mice lacking reduced nicotinamide adenine dinucleotide phosphate oxidase activity show increased susceptibility to early infection with Listeria monocytogenes. J Immunol 158: 5581–5583, 1997

  16. 16.

    Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, Cohen RA: Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88: 947–953, 2001

  17. 17.

    Souza HP, Laurindo FR, Ziegelstein RC, Berlowitz CO, Zweier JL: Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Am J Physiol Heart Circ Physiol 280: H658–H667, 2001

  18. 18.

    Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD: Cell transformation by the superoxidegenerating oxidase Mox1. Nature 401: 79–82, 1999

  19. 19.

    Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK: Novel gp91phox homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88: 888–894, 2001

  20. 20.

    Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA, Lambeth JD: Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98: 5550–5555, 2001

  21. 21.

    Stuehr DJ: Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 37: 339–359, 1997

  22. 22.

    Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF: Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: An FAD-and FMN-containing flavoprotein. Proc Natl Acad Sci USA 88: 7773–7777, 1991.

  23. 23.

    Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H: Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 50: 1321–1332, 1995

  24. 24.

    Sessa WC, Barber CM, Lynch KR: Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res 72: 921–924, 1993

  25. 25.

    Robinson LJ, Michel T: Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc Natl Acad Sci USA 92: 11776–11780, 1995

  26. 26.

    Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T: Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271: 22810–22814, 1996

  27. 27.

    Bredt DS, Snyder SH: Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86: 9030–9033, 1989

  28. 28.

    Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F: Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 88: 10480–10484, 1991

  29. 29.

    Cho HJ, Xie Q-W, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Nathan C: Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176: 599–604, 1992

  30. 30.

    Singh R, Pervin S, Rogers NE, Ignarro LJ, Chaudhuri G: Evidence for the presence of an unusual nitric oxide-and citrulline-producing enzyme in rat kidney. Biochem Biophys Res Commun 232: 672–677, 1997

  31. 31.

    Bates TE, Loesch A, Burnstock G, Clark JB: Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213: 896–900, 1995

  32. 32.

    Bates TE, Loesch A, Burnstock G, Clark JB: Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 218: 40–44, 1996

  33. 33.

    Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS: Endothelial type nitric oxide synthase in skeletal muscle fibers: Mitochondrial relationships. Biochem Biophys Res Commun 211: 375–381, 1995

  34. 34.

    Giulivi C, Poderoso JJ, Boveris A: Production of nitric oxide by mitochondria. J Biol Chem 273: 11038–11043, 1998

  35. 35.

    Ghafourifar P, Richter C: Nitric oxide synthase activity in mitochondria. FEBS Lett 418: 291–296, 1997

  36. 36.

    Sarkela TM, Berthiaume J, Elfering S, Gybina AA, Giulivi C: The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 276: 6945–6949, 2001

  37. 37.

    Sies H, Arteel GE: Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radic Biol Med 28: 1451–1455, 2000

  38. 38.

    Schafer FQ, Buettner GR: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212, 2001

  39. 39.

    Gilbert HF: Biological disulfides: the third messenger? Modulation of phosphofructokinase activity by thiol/disulfide exchange. J Biol Chem 257: 12086–12091, 1982

  40. 40.

    Winterbourn CC, Metodiewa D: Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27: 322–328, 1999

  41. 41.

    Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB: 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275: 28421–28427, 2000

  42. 42.

    Akerboom TPM, Sies H: Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth Enzymol 77: 373–382, 1981

  43. 43.

    Loeb GA, Skelton DC, Forman HJ: Dependence of mixed disulfide formation in alveolar macrophages upon production of oxidized glutathione: Effect of selenium depletion. Biochem Pharmacol 38: 3119–3121, 1989

  44. 44.

    Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS: Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290: 1571–1574, 2000

  45. 45.

    Rietsch A, Beckwith J: The genetics of disulfide bond metabolism. Annu Rev Genet 32: 163–184, 1998

  46. 46.

    Loeb GA, Skelton DC, Coates TD, Forman HJ: Role of the selenium dependent glutathione peroxidase in antioxidant defenses in rat alveolar macrophages. Exp Lung Res 14: 921–936, 1988

  47. 47.

    Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H: Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596–2606, 1998

  48. 48.

    Gopalakrishna R, Jaken S: Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28: 1349–1361, 2000

  49. 49.

    Gopalakrishna R, Chen Z-H, Gundimeda U: Protein kinase C as a sensor for oxidative stress in tumor promotion and chemoprevention. In: H.J. Forman, E. Cadenas (eds). Oxidative Stress and Signal Transduction. Chapman and Hall, New York, 1997, pp 157–180

  50. 50.

    Kaul N, Gopalakrishna R, Gundimeda U, Choi J, Forman HJ: Role of protein kinase C in basal and hydrogen peroxide-stimulated NF-κB activation in the murine macrophage J774A.1 cell line. Arch Biochem Biophys 350: 79–86, 1998

  51. 51.

    Gordon JA: Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Meth Enzymol 201: 477–482, 1991

  52. 52.

    Denu JM, Tanner KG: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37: 5633–5642, 1998

  53. 53.

    Lee SR, Kwon KS, Kim SR, Rhee SG: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372, 1998

  54. 54.

    Fauman EB, Saper MA: Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21: 413–417, 1996

  55. 55.

    Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG: Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem 283: 214–221, 2000

  56. 56.

    Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G, Ramponi G: The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem 273: 32554–32560, 1998

  57. 57.

    Barrett WC, DeGnore JP, Konig S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB: Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705, 1999

  58. 58.

    Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB: Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274: 34543–34546, 1999

  59. 59.

    Richter-Addo GB, Legzdins P: In: Metal Nitrosyls. Oxford University Press, New York, 1992

  60. 60.

    Williams DLH: The chemistry of S-nitrosothiols. Acc Chem Res 32: 869–876, 1999

  61. 61.

    Goldstein S, Czapski G: Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: The nature of the nitrosating intermediates. J Am Chem Soc 118: 3419–3425, 1996

  62. 62.

    Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr: Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95: 2175–2179, 1998

  63. 63.

    Wade RS, Castro CE: Redox reactivity of iron(III) porphyrins and heme proteins with nitric oxide. Nitrosyl transfer to carbon, oxygen, nitrogen, and sulfur. Chem Res Toxicol 3: 289–291, 1990

  64. 64.

    Boese M, Mordvintcev PI, Vanin AF, Busse R, Mulsch A: S-nitrosation of serum albumin by dinitrosyl-iron complex. J Biol Chem 270: 29244–29449, 1995

  65. 65.

    Gow AJ, Buerk DG, Ischiropoulos H: A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 272: 2841–2845, 1997

  66. 66.

    Pryor WA, Church DF, Govindan CK, Crank G: Oxidation of thiols by nitric oxide nitrogen dioxide: Synthetic utility toxicological implications. J Org Chem 47, 1982

  67. 67.

    Prutz WA, Monig H, Butler J, Land EJ: Reactions of nitrogen dioxide in aqueous model systems: Oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys 243: 125–134, 1985

  68. 68.

    Oae S, Kim YH, Fukushima D, Shinhama K: New syntheses of thionitrites their chemical reactivities. J Chem Soc, Perkin Trans 1, 1978

  69. 69.

    van der Vliet A, Hoen PA, Wong PS, Bast A, Cross CE: Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273: 30255–30262, 1998

  70. 70.

    Fukuto JM, Ignarro LJ: In Vivo aspects of nitric oxide (NO) chemistry: Does peroxynitrite (- OONO) play a major role in cytotoxicity? Acc Chem Res 30: 149–152, 1997

  71. 71.

    Barnett DJ, McAninly J, Williams DLH: Transnitrosation between nitrosothiols and thiols. J Chem Soc, Perkin Trans 2: 1131–1133, 1994

  72. 72.

    Barnett DJ, Rios A, Williams DLH: NO-group transfer (transnitrosation) between S-nitrosothiols and thiols. Part 2. J Chem Soc, Perkin Trans 2: 1279–1282, 1994

  73. 73.

    Williams DLH: Nitric oxide release from S-nitrosothiols (RSNO) - the role of copper ions. Trans Metal Chem 21: 189–191, 1996

  74. 74.

    Dicks AP, Swift HR, Williams DLH, Butler AR, Al-Sa'doni HH, Cox BG: Identification of Cu+ as the effective reagent in nitric oxide formation from S-nitrosothiols (RSNO). J Chem Soc, Perkin Trans 2: 481–487, 1996

  75. 75.

    Arnelle DR, Stamler JS: NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by Snitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318: 279–285, 1995

  76. 76.

    Wong PS, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT, Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 37: 5362–5371, 1998

  77. 77.

    Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410: 490–494, 2001

  78. 78.

    Stamler JS, Toone EJ, Lipton SA, Sucher NJ: (S)NO signals: Translocation, regulation, and a consensus motif. Neuron 18: 691–696, 1997

  79. 79.

    Perez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM: Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 274: 17075–17079, 1999

  80. 80.

    Whitmarsh AJ, Davis RJ: Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481–485, 1998

  81. 81.

    Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S, Scott JD: Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271: 1589–1592, 1996

  82. 82.

    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH: Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat Cell Biol 3: 193–197, 2001

  83. 83.

    Lander HM: An essential role for free radicals and derived species in signal transduction. FASEB J 11: 118–124, 1997

  84. 84.

    Govers R, Rabelink TJ: Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 280: F193–F206, 2001

  85. 85.

    Pfeilschifter J, Eberhardt W, Beck KF: Regulation of gene expression by nitric oxide. Pflügers Arch 442: 479–486, 2001

  86. 86.

    Park HS, Huh SH, Kim MS, Lee SH, Choi EJ: Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci USA 97: 14382–14387, 2000

  87. 87.

    Takakura K, Beckman JS, MacMillan-Crow LA, Crow JP: Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch Biochem Biophys 369: 197–207, 1999

  88. 88.

    Ignarro LJ: Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65: 1–21, 1989.

  89. 89.

    Traylor TG, Sharma VS: Why NO? Biochemistry 31: 2847–2849, 1992

  90. 90.

    Traylor TG, Duprat AF, Sharma VS: Nitric oxide-triggered heme-mediated hydrolysis: A possible model for biological reactions of NO. J Am Chem Soc 115: 811–813, 1993

  91. 91.

    Cooper CE: Nitric oxide and iron proteins. Biochim Biophys Acta 1411: 290–309, 1999

  92. 92.

    Brown GC: Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 369: 136–139, 1995

  93. 93.

    Hoshino M, Ozawa K, Seki H, Ford PC: Photochemistry of nitric oxide adducts of water-soluble iron(III) porphyrin ferrihemoproteins studied by nanosecond laser photolysis. J Am Chem Soc 115: 9568–9575, 1993

  94. 94.

    Das KC, Lewis-Molock Y, White CW: Activation of NF-κB and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am J Physiol 269: L588–L602, 1995.

  95. 95.

    Chan ED, Riches DW, White CW: Redox paradox: effect of N-acetylcysteine and serum on oxidation reduction-sensitive mitogen-activated protein kinase signaling pathways. Am J Respir Cell Mol Biol 24: 627–632, 2001

  96. 96.

    Brennan P, O'Neill LA: 2-Mercaptoethanol restores the ability of nuclear factor-kB (NF-κB) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate (PDTC). Evidence for oxidation of glutathione in the mechanism of inhibition of NF-κB by PDTC. Biochem J 320: 975–981, 1996

  97. 97.

    Azzi A, Aratri E, Boscoboinik D, Clement S, Ozer NK, Ricciarelli R, Spycher, S: Molecular basis of alpha-tocopherol control of smooth muscle cell proliferation. Biofactors 7: 3–14, 1998

  98. 98.

    Tarpey MM, Fridovich I: Methods of detection of vascular reactive species: Nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89: 224–236, 2001

  99. 99.

    Torres M, Forman HJ: Activation of several MAP kinases upon stimulation of rat alveolar macrophages: Role of the NADPH oxidase. Arch Biochem Biophys 366: 231–239, 1999

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forman, H.J., Torres, M. & Fukuto, J. Redox signaling. Mol Cell Biochem 234, 49–62 (2002) doi:10.1023/A:1015913229650

Download citation

  • reactive oxygen species
  • reactive nitrogen species
  • redox signaling