Pharmaceutical Research

, Volume 7, Issue 1, pp 91–95 | Cite as

Effect of Aliphatic Side-Chain Substituents on the Antimalarial Activity and on the Metabolism of Primaquine Studied Using Mitochondria and Microsome Preparations

  • John K. Baker
  • Robert H. Yarber
  • N. P. D. Nanayakkara
  • James D. McChesney
  • Frederic Homo
  • Irene Landau


The substitution of two deuterium atoms on the α-carbon of the primaquine side chain was found to produce a sevenfold decrease in the rate of conversion of primaquine to carboxyprimaquine by enzymatic oxidative deamination, but the deuterium substitution was found to have no significant effect on the in vitro antimalarial activity or on in vitro hepatocyte toxicity. Placing a single methyl group on the α-carbon was found to produce only a slight decrease in the rate of oxidative deamination. Although metabolic attack occurred adjacent to either the aniline nitrogen or the aliphatic amine, metabolic attack occurred primarily adjacent to the more basic nitrogen at the l′-position, even when this position bore a methyl substituent. Primaquine, the α-dideutero analogue, and the α-methyl analogue were all found to have about the same in vitro antimalarial activity as determined in the liver hepatocyte assay.

malaria drug metabolism deuterium isotope effect cytotoxicity, quinocide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. Baker, J. D. McChesney, and A. M. Clark. J. Chromatogr. 230:69–77 (1982).Google Scholar
  2. 2.
    A. M. Clark, J. K. Baker, and J. D. McChesney. J. Pharm. Sci. 73:502–506 (1984).Google Scholar
  3. 3.
    J. K. Baker, J. A. Bedford, A. M. Clark, and J. D. McChesney. Pharm. Res. 1:98–100 (1984).Google Scholar
  4. 4.
    G. W. Mihaly, S. A. Ward, G. Edwards, and A. M. Breckenridge. Br. J. Clin. Pharmacol. 17:441–446 (1984).Google Scholar
  5. 5.
    J. D. McChesney and S. Sarangan. J. Label. Comp. Radiopharm. 22:293–298 (1984).Google Scholar
  6. 6.
    M. E. Jung, W. A. Andrus, and P. L. Overstein. Tetrahedron Lett. 48:4175–4178 (1977).Google Scholar
  7. 7.
    J. A. Bulat and H. J. Liu Can. J. Chem. 54:3869–3871 (1976).Google Scholar
  8. 8.
    L. Haskelberg. J. Org. Chem. 12:434–438 (1947).Google Scholar
  9. 9.
    A. Brossi, P. Millet, I. Landau, M. E. Bembenek, and C. W. Abell. FEBS Lett. 214:291–294 (1987).Google Scholar
  10. 10.
    P. Jenner and B. Testa. Concepts in Drug Metabolism, Marcel Dekker, New York, 1980, Chap. 3.Google Scholar
  11. 11.
    J. D. Baty, D. A. P. Evans, and P. A. Robinson. Biomed. Mass Spectrosc. 2:304–307 (1976).Google Scholar
  12. 12.
    G. W. Parkhurst, M. V. Nora, R. W. Thomas, and P. E. Carson. J. Pharm. Sci. 73:1329–1331 (1984).Google Scholar
  13. 13.
    J. K. Baker, J. D. McChesney, and L. F. Jorge. Pharm. Res. 3:132–141 (1986).Google Scholar
  14. 14.
    R. Naef and D. Seeback. Leibigs Ann. Chem. 1983:1930–1936 (1983).Google Scholar
  15. 15.
    C. D. Hufford, J. D. McChesney, and J. K. Baker. J. Heterocycl. Chem. 20:273–275 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • John K. Baker
    • 1
  • Robert H. Yarber
    • 1
  • N. P. D. Nanayakkara
    • 2
  • James D. McChesney
    • 2
  • Frederic Homo
    • 3
  • Irene Landau
    • 3
  1. 1.Department of Medicinal Chemistry, School of PharmacyUniversity of Mississippi
  2. 2.Department of Pharmacognosy, School of PharmacyUniversity of Mississippi
  3. 3.Laboratoire De Zoologie (Vers)Museum National d'Histoire NaturelleParis Cedex 05France

Personalised recommendations