Pharmaceutical Research

, Volume 8, Issue 12, pp 1520–1524 | Cite as

Stereoselective Disposition of Ibuprofen Enantiomers in the Isolated Perfused Rat Kidney

  • Hae-Young Ahn
  • Fakhreddin Jamali
  • Steven R. Cox
  • Dangnoi Kittayanond
  • David E. Smith


The renal clearance of ibuprofen enantiomer was studied separately in the isolated perfused rat kidney at initial perfusate concentrations of 10 µg/ml (n = 4) and 100 µg/ml (n = 4). Perfusate and urine samples were measured for R(–) and S( + )-ibuprofen using a stereospecific HPLC assay; urine samples were also analyzed after alkaline hydrolysis. Functional viability of the kidney was assured by determining the fractional excretion of glucose and glomerular filtration rate (GFR) at similar perfusion pressures. The clearance of ibuprofen was equivalent to the apparent formation clearance of conjugated enantiomer since unchanged ibuprofen could not be detected in the urine. At 10 and 100 µg/ml, the clearance (±SD) of R(–)-ibuprofen was 2.50 ± 1.28 and 2.19 ± 1.42 µl/min, respectively. At 100 µg/ml, the clearance of S( + )-ibuprofen was 0.805 ± 0.290 µl/min. The protein binding of ibuprofen was found to be concentration dependent and favored the R(–)-enantiomer. The excretion ratio (clearance corrected for free fraction and GFR) of R(–)-ibuprofen was 0.398 ± 0.209 and 0.295 ± 0.209 for perfusate concentrations of 10 and 100 µg/ml, respectively. The excretion ratio of S( + )-ibuprofen was 0.0886 ± 0.0335 for perfusate concentrations of 100 µg/ml. These results demonstrate that the sum of renal mechanisms involved for the clearance of R(–)- and S( + )-ibuprofen was net reabsorption. Ibuprofen was recovered in the urine solely as conjugated material and no evidence of R(–) to S( + ) conversion was observed. In addition, the data suggest that R(–)-ibuprofen is cleared through the kidney faster than its S( + )-enantiomer.

ibuprofen enantiomers renal clearance renal metabolism rat isolated perfused kidney 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Verbeeck. Pathophysiological factors affecting the pharmacokinetics of nonsteroidal antiinflammatory drugs. J. Rheumatol. (Suppl. 17) 15:44–57 (1988).Google Scholar
  2. 2.
    R. O. Day, G. G. Graham, K. M. Williams, G. D. Champion, and J. de Jager. Clinical pharmacology of nonsteroidal antiinflammatory drugs. Pharmacol. Ther. 33:383–433 (1987).Google Scholar
  3. 3.
    F. Jamali, R. Mehvar, and F. M. Pasutto. Enantioselective aspects of drug action and disposition: Therapeutic pitfalls. J. Pharm. Sci. 78:695–715 (1989).Google Scholar
  4. 4.
    M. D. Murray and D. C. Brater. Nonsteroidal antiinflammatory drugs. Clin. Geriatr. Med. 6:365–397 (1990).Google Scholar
  5. 5.
    A. M. Evans, R. L. Nation, L. N. Sansom, F. Bochner, and A. A. Somogyi. Stereoselective plasma protein binding of ibuprofen enantiomers. Eur. J. Clin. Pharmacol. 36:283–290 (1989).Google Scholar
  6. 6.
    I. Bekersky. Use of the isolated perfused kidney as a tool in drug disposition studies. Drug Metab. Rev. 14:931–960 (1983).Google Scholar
  7. 7.
    J. M. Nishiitsutsuji-Uwo, B. D. Ross, and H. A. Krebs. Metabolic activities of the isolated perfused rat kidney. Biochem. J. 103:852–862 (1967).Google Scholar
  8. 8.
    R. H. Bowman. The perfused rat kidney. Methods Enzymol. 39:3–11 (1975).Google Scholar
  9. 9.
    J. Hasegawa, P. C. Smith, and L. Z. Benet. Apparent intramolecular acyl migration of zomepirac glucuronide. Drug Metab. Dispos. 10:469–473 (1982).Google Scholar
  10. 10.
    M. L. Hyneck, P. C. Smith, E. Unseld, and L. Z. Benet. HPLC determination of tolmetin, tolmetin glucuronide and its isomeric conjugates in plasma and urine. J. Chromatogr. 420:349–356 (1987).Google Scholar
  11. 11.
    R. Mehvar, F. Jamali, and F. M. Pasutto. Liquid-chromatographic assay of ibuprofen enantiomers in plasma. Clin. Chem. 34:493–496 (1988).Google Scholar
  12. 12.
    G. F. Lockwood and J. G. Wagner. High-performance liquid chromatographic determination of ibuprofen and its major metabolites in biological fluids. J. Chromatogr. 232:335–343 (1982).Google Scholar
  13. 13.
    G. F. Lockwood, K. S. Albert, G. J. Szpunar, and J. G. Wagner. Pharmacokinetics of ibuprofen in man. III. Plasma protein binding. J. Pharmacokin. Biopharm. 11:469–482 (1983).Google Scholar
  14. 14.
    T. N. Tozer, J. G. Gambertoglio, D. E. Furst, D. S. Avery, and N. H. G. Holford. Volume shifts and protein binding estimates using equilibrium dialysis: Application to prednisolone binding in humans. J. Pharm. Sci. 72:1442–1446 (1983).Google Scholar
  15. 15.
    H. L. Behm and J. G. Wagner. Errors in interpretation of data from equilibrium dialysis protein binding experiments. Res. Commun. Chem. Pathol. Pharmacol. 26:145–160 (1979).Google Scholar
  16. 16.
    B. D. Ross. The isolated perfused rat kidney. Clin. Sci. Mol. Med. 55:513–521 (1978).Google Scholar
  17. 17.
    L.-J. Lee, J. A. Cook, and D. E. Smith. Renal transport kinetics of chlorothiazide in the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 247:203–208 (1988).Google Scholar
  18. 18.
    M. S. Lennard, G. T. Tucker, J. H. Silas, S. Freestone, L. E. Ramsay, and H. F. Woods. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin. Pharmacol. Ther. 34:732–737 (1983).Google Scholar
  19. 19.
    J. J. Lima, H. Boudoulas, and B. J. Shields. Stereoselective pharmacokinetics of disopyramide enantiomers in man. Drug Metab. Dispos. 13:572–577 (1985).Google Scholar
  20. 20.
    P.-H. Hsyu and K. M. Giacomini. Stereoselective renal clearance of pindolol in humans. J. Clin. Invest. 76:1720–1726 (1985).Google Scholar
  21. 21.
    D. A. Notterman, D. E. Drayer, L. Metakis, and M. M. Reidenberg. Stereoselective renal tubular secretion of quinidine and quinine. Clin. Pharmacol. Ther. 40:511–517 (1986).Google Scholar
  22. 22.
    E. J. D. Lee, K. Williams, R. Day, G. Graham, and D. Champion. Stereoselective disposition of ibuprofen enantiomers in man. Br. J. Clin. Pharmacol. 19:669–674 (1985).Google Scholar
  23. 23.
    M. El Mouelhi, H. W. Ruelius, C. Fenselau, and D. M. Dulik. Species-dependent enantioselective glucuronidation of three 2-arylpropionic acids: Naproxen, ibuprofen, and benoxaprofen. Drug Metab. Dispos. 15:767–772 (1987).Google Scholar
  24. 24.
    S. Fournel and J. Caldwell. The metabolic chiral inversion of 2-phenylpropionic acid in rat, mouse and rabbit. Biochem. Pharmacol. 35:4153–4159 (1986).Google Scholar
  25. 25.
    R. T. Foster, F. Jamali, A. S. Russell, and S. R. Alballa. Pharmacokinetics of ketoprofen enantiomers in healthy subjects following single and multiple doses. J. Pharm. Sci. 77:70–73 (1988).Google Scholar
  26. 26.
    R. T. Foster, F. Jamali, A. S. Russell, and S. R. Alballa. Pharmacokinetics of ketoprofen enantiomers in young and elderly arthritic patients following single and multiple doses. J. Pharm. Sci. 77:191–195 (1988).Google Scholar
  27. 27.
    R. T. Foster and F. Jamali. Stereoselective pharmacokinetics of ketoprofen in the rat: Influence of route of administration. Drug Metab. Dispos. 16:623–626 (1988).Google Scholar
  28. 28.
    F. Jamali, B. W. Berry, M. R. Tehrani, and A. S. Russell. Stereoselective pharmacokinetics of flurbiprofen in humans and rats. J. Pharm. Sci. 77:666–669 (1988).Google Scholar
  29. 29.
    T. Yamaguchi and Y. Nakamura. Stereoselective metabolism of 2-phenylpropionic acid in rat. II. Studies on the organs responsible for the optical isomerization of 2-phenylpropionic acid in rat in vivo. Drug Metab. Dispos. 15:535–539 (1987).Google Scholar
  30. 30.
    A. Shah and D. Jung. Dose-dependent pharmacokinetics of ibuprofen in the rat. Drug Metab. Dispos. 15:151–154 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Hae-Young Ahn
    • 1
  • Fakhreddin Jamali
    • 2
  • Steven R. Cox
    • 3
  • Dangnoi Kittayanond
    • 1
  • David E. Smith
    • 1
  1. 1.College of PharmacyThe University of MichiganAnn Arbor
  2. 2.Faculty of PharmacyThe University of AlbertaEdmontonCanada
  3. 3.Clinical Pharmacokinetics Research UnitThe Upjohn CompanyKalamazoo

Personalised recommendations