Advertisement

Pharmaceutical Research

, Volume 9, Issue 12, pp 1534–1539 | Cite as

Lymphatic Targeting of Polymeric Nanoparticles After Intraperitoneal Administration in Rats

  • Philippe Maincent
  • Pierre Thouvenot
  • Claude Amicabile
  • Maurice Hoffman
  • Jörg Kreuter
  • Patrick Couvreur
  • Jean Philippe Devissaguet
Article

Abstract

Following intraperitoneal administration, the lymphatic targeting of polyacrylic nanoparticles has been evaluated in thoracic duct cannulated rats. The dosage forms administered consisted of carbon-14 polyhexylcyanoacrylate nanoparticles (PHCA) and polymethylmethacrylate (PMMA) nanoparticles. The carbon-14 concentrations were much higher in the excreted thoracic lymph than in the blood for both types of particles. The most dramatic results were found in the mediastinal nodes since the carbon-14 concentrations of rats receiving PHCA and PMMA nanoparticles by the ip route were 70-to more than 2000-fold higher than in the corresponding nodes of animals treated by the intravenous route. This potential lymphatic targeting could prove valuable in cancerology to treat tumors that metastasize in the peritoneal cavity or via lymphatic pathways such as colon carcinomas.

lymphatic targeting intraperitoneal administration polyacrylic nanoparticles rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. Hubert, J. Atkinson, M. Guerret, M. Hoffman, J. P. Devissaguet, and P. Maincent. The preparation and acute antihypertensive effects of a nanocapsular form of darodipine, a dihydropyridine calcium entry blocker. Pharm. Res. 8:734–738 (1991).Google Scholar
  2. 2.
    L. Marchal-Heussler, H. Fessi, J. P. Devissaguet, M. Hoffman, and P. Maincent. Colloidal drug delivery system for the eye. A comparison of the efficacy of three different polymers: Polyisobutylcyanoacrylate, polylactic-co-glycolic acid, polyepsiloncaprolacton. STP Pharma Sci. 2:98–104 (1992).Google Scholar
  3. 3.
    J. Kreuter, M. Nefzger, E. Liehl, R. Czok, and R. Voges. Distribution and elimination of polymethylmethacrylate nanoparticles after subcutaneous administration to rats. J. Pharm. Sci. 72:1146–1149 (1983).Google Scholar
  4. 4.
    R. Parker, E. Priester, and S. Sieber. Comparison of lymphatic uptake, metabolism, excretion and biodistribution of free and liposome-entrapped 14C-cytosine and β-D-arabinofuranoside following intraperitoneal administration to rats. Drug Metab. Disp. 10:40–46 (1982).Google Scholar
  5. 5.
    K. Hirano and C. A. Hunt. Lymphatic transport of liposome-encapsulated agents: Effects of liposome size following intraperitoneal administration. J. Pharm. Sci. 74:915–921 (1985).Google Scholar
  6. 6.
    F. Courtice, J. Harding, and W. Steinbeck. The removal of free red blood cells from the peritoneal cavity of animals. Austral. J. Exp. Biol. 31:215–226 (1953).Google Scholar
  7. 7.
    L. Allen. On the penetrability of the lymphatics of the diaphragm. Anat. Rec. 124:639–657 (1956).Google Scholar
  8. 8.
    J. Ludwig. Trapping of calibrated microspheres in rat lymph nodes. Lymphology 1:18–24 (1971).Google Scholar
  9. 9.
    L. Grislain. Etude de la distribution corporelle des nanoparticules de polycyanoacrylate d'alkyle et des molécules associées, Ph.D. thesis, Université Catholique de Louvain, Louvain, Belgium, 1984, pp. 63–67.Google Scholar
  10. 10.
    P. Edman and I. Sjöholm. Acrylic microspheres in vivo. II. The effect in rat of L-asparaginase given in microparticles of polyacrylamide. J. Pharmacol. Exp. Ther. 211:663–667 (1979).Google Scholar
  11. 11.
    P. Couvreur, M. Roland, and P. Speiser. Nanoparticules biodégradables, compositions pharmaceutiques les contenant et procédé pour leur préparation. European patent 0 007 865 (1983).Google Scholar
  12. 12.
    E. Gipps, R. Arshady, J. Kreuter, P. Groscurth, and P. Speiser. Distribution of polyhexylcyanoacrylate nanoparticles in nude mice bearing human osteosarcoma. J. Pharm. Sci. 75:256–258 (1986).Google Scholar
  13. 13.
    J. Kreuter, U. Tauber, and V. Illi. Distribution and elimination of polymethyl (2-14C) methacrylate nanoparticle radioactivity after injection in rats and mice. J. Pharm. Sci. 68:1443–1447 (1979).Google Scholar
  14. 14.
    T. Saldeen and E. Linder. A method for long term collection of lymph from the thoracic duct in rats. Acta Pathol 49:433–437 (1960).Google Scholar
  15. 15.
    P. Couvreur, L. Grislain, V. Lenaerts, F. Brasseur, P. Guiot, and A. Bernacki. Biodegradable polymeric nanoparticles as drug carrier for antitumor agents. In P. Guiot and P. Couvreur (eds.), Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton, FL, 1986, pp. 27–93.20.Google Scholar
  16. 16.
    J. Kreuter. Physicochemical characterization of polyacrylic nanoparticles. Int. J. Pharm. 14:43–58 (1983).Google Scholar
  17. 17.
    J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J. Control Release 11:205–214 (1990).Google Scholar
  18. 18.
    S. S. Davis and L. Illum. Colloidal delivery systems—Opportunities and challenges. In E. Tomlinson and S. S. Davis (eds.), Site Specific Drug Delivery, Wiley and Sons, New York, 1986, pp. 93–110.Google Scholar
  19. 19.
    K. Hirano, C. A. Hunt, A. Strubbe, and R. D. MacGregor. Lymphatic transport of liposome-encapsulated drugs following intraperitoneal administration—Effect of lipid composition. Pharm. Res. 2:271–278 (1985).Google Scholar
  20. 20.
    M. Flessner, R. Parker, and S. Sieber. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am. J. Physiol. 244:89–96 (1983).Google Scholar
  21. 21.
    E. Tsilibary and S. Wissig. Lymphatic absorption from the peritoneal cavity: Regulation of potency of mesothelial stomata. Microvasc. Res. 25:22–39 (1983).Google Scholar
  22. 22.
    T. Olin and T. Saldeen. The lymphatic pathways from the peritoneal cavity: A lymphangiographic study in the rat. Cancer Res. 24:1700–1711 (1964).Google Scholar
  23. 23.
    V. Lenaerts, P. Couvreur, L. Grislain, and P. Maincent. Nanoparticles as a gastroadhesive drug delivery system. In V. Lenaerts and R. Gurny (eds.), Bioadhesive Drug Delivery Systems, CRC Press, Boca Raton, FL, 1989, pp. 93–104.Google Scholar
  24. 24.
    C. I. Price, J. W. Horton, and C. R. Baxter. Enhanced effectiveness of intraperitoneal antibiotics administered via liposomal carrier. Arch. Surg. 124:1411–1415 (1989).Google Scholar
  25. 25.
    G. Feldman and R. C. Knapp. Lymphatic drainage of the peritoneal cavity and its significance in ovarian cancer. Am. J. Obstet. Gynecol. 119:991–994 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Philippe Maincent
    • 1
  • Pierre Thouvenot
    • 2
  • Claude Amicabile
    • 3
  • Maurice Hoffman
    • 1
  • Jörg Kreuter
    • 4
  • Patrick Couvreur
    • 5
  • Jean Philippe Devissaguet
    • 5
  1. 1.Laboratoire de Pharmacie galénique et BiopharmacieFaculté des Sciences Pharmaceutiques et BiologiquesFrance
  2. 2.Laboratoire de Médecine NucléaireCHRU Nancy BraboisFrance
  3. 3.Polyclinique d'Essey les NancyFrance
  4. 4.Institut for Pharmaceutical TechnologyJ. W. Goethe UniversityGermany
  5. 5.Laboratoire de Pharmacie galénique et BiopharmacieCentre d'Etudes PharmaceutiquesRue ClémentFrance

Personalised recommendations