, Volume 125, Issue 2, pp 273–280 | Cite as

Simplified AFLP procedure as a tool for identification of strawberry cultivars and advanced breeding lines

  • Mirosław Tyrka
  • Piotr Dziadczyk
  • Jerzy A. Hortyński


DNA polymorphisms among 6 cultivars of Fragaria × ananassa (Duch.) and 13salinity tolerant clones were evaluated using simplified – PstI based Amplified Fragment Length Polymorphism procedure(PstIAFLP). Out of 129 amplification products obtained with 10 selective primers, 116 markers were polymorphic and could be used to distinguish all analyzed materials. Coordinate and cluster analyses revealed 2 main groups of clones and divided strawberry cultivars (CUL) and tested F1 hybrids of ‘Sweet Heart’(HYB). Mean genetic similarities in groups of cultivars and selected breeding lines (SEL) were significantly higher (0.722 and0.706, respectively, p < 0.05) than in group of SH hybrids (0.485). Results suggest that PstIAFLP method is sufficient for effective identification and useful for assessing the level of genetic diversity in strawberry cultivars and breeding lines. The presented method can bean alternative multilocus marker system to widespread RAPD method.

AFLP cultivar identification Fragaria × ananassa genetic diversity molecular markers strawberry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, J.A. & D.W. Simpson, 1994. The use of isoenzyme polymorphisms as an aid for cultivar identification in strawberry. Euphytica 77(1-2): 113–117.Google Scholar
  2. Catling, P.M. & S. Porebski, 1998. An ecoregional analysis of morphological variation in British Columbia coastal strawberries (Fragaria) for germplasm protection. Can J Pl Sci 78(1): 117–124.Google Scholar
  3. Daubeny, H.A. 1990. Strawberry breeding in Canada. Hort Sci 25(8): 893–894.Google Scholar
  4. Degani, C., L.J. Rowland, A. Levi, J.A. Horty´nski & G.J. Galletta, 1998. DNA fingerprinting of strawberry (Fragaria x ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers. Euphytica 102(2): 247–253.CrossRefGoogle Scholar
  5. Degani C., L.J. Rowland, J.A. Saunders, S.C. Hokanson, E.L. Ogden, A. Golan-Goldhirsh & G.J. Galletta, 2001. A comparison of genetic relationship measures in strawberry (Fragaria ? ananassa Duch.) based on AFLPs, RAPDs, and pedigree data. Euphytica 117: 1–12.CrossRefGoogle Scholar
  6. Gidoni, D., M. Rom, T. Kunik, M. Zur, E. Izsak, S. Izhar & N. Firon, 1994. Strawberry cultivar identification using randomly amplified polymorphic DNA (RAPD) markers. Plant Breeding 113(4): 339–342.CrossRefGoogle Scholar
  7. Graham, J., R.J. McNicol & J.W. McNicol, 1996. A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theor Appl Genet 93: 402–406.CrossRefGoogle Scholar
  8. Greco, I., G. Martelli & D.W. Simpson, 1993. Isoenzymatic characterization of strawberry clones in southern Italy. Acta Hort 345: 21–27.Google Scholar
  9. Hancock, J.F., J.L. Maas, C.H. Shanks, P.J. Breen & J.J. Luby, 1991. Strawberries (Fragaria). In: J.M. Moore & Ballington J.R. (Eds.), Genetic Resources of Temperate Fruit and Nut Crops. International Society for Horticultural Science. Wageningen The Netherlands.Google Scholar
  10. Hancock, J.F., P.A. Callow & D.V. Shaw, 1994. Randomly ampli-fied polymorphic DNAs in the cultivated strawberry, Fragaria x ananassa. J Am Soc Hort Sci 119(4): 862–864.Google Scholar
  11. Harrison, R.E., J.J. Luby, G.R. Furnier & J.F. Hancock, 1997. Morphological and molecular variation among populations of octoploid Fragaria virginiana and F. chiloensis (Rosaceae) from North America. Am J Bot 84(5): 612–620.CrossRefGoogle Scholar
  12. Haymes, K.M., B. Henken, T.M. Davis & W.E. Van de Weg, 1997. Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor Appl Genet 94(8): 1097–1101.CrossRefGoogle Scholar
  13. Hummer, K.E. & B.C. Strik, 1997. Strawberry genebank information on Worldwide Web. In: H.A.Th. van der Scheer, F. Lieten & J. Dijkstra (Eds), Proc 3rd Int Strawberry Symp Acta Hort 439: 49–53.Google Scholar
  14. Jomantiene, R., R.E. Davis, E.L. Dally, J.L. Maas & J.D. Postman, 1998. The distinctive morphology of Fragaria multicipita is due to phytoplasma. Hort Sci 33(6): 1069–1072.Google Scholar
  15. Khanizadeh, S. & Bélanger A, 1997. Classification of 92 strawberry genotypes based on their leaf essential oil composition. Acta Hort 439(1): 205–209.Google Scholar
  16. Landry, B.S., L. Rongqi, S. Khanizadeh & J. Dijkstra, 1997. Classification of 75 strawberry cultivars and breeding lines using RAPD markers. Acta Hort 439: 101–105.Google Scholar
  17. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.PubMedGoogle Scholar
  18. Milligan, B.G., 1992. Plant DNA isolation. In: Molecular Analysis of Populations: A Practical Approach, pp. 59–88. IRL Press, Oxford, UK.Google Scholar
  19. Nehra, N.S., K.K. Kartha & C. Stushnoff, 1991. Isozymes as markers for identification of tissue culture and greenhouse-grown strawberry cultivars. Can J Pl Sci 71(4): 1195–1201.Google Scholar
  20. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273.PubMedCrossRefGoogle Scholar
  21. Parent, J.G. & D. Page, 1995. Authentication of the 13 strawberry cultivars of Quebec's certification programme by random amplified polymorphic DNA analysis (RAPD). Can J Pl Sci 75(1): 221–224.Google Scholar
  22. Riede, C.R., D.J. Fairbanks, W.R. Andersen, R.L. Kehrer & L.R. Robison, 1994. Enhancement of RAPD analysis by restrictionendonuclease digestion of template DNA in wheat. Pl Breeding 113(3): 254–257.CrossRefGoogle Scholar
  23. Rohlf, F.J.,, 1989. NTSYS-pc numerical taxonomy and multivariate analysis system. Version 5.1. Exeter Publishing Ltd., Setauket, N.Y.Google Scholar
  24. Sánchez de la Hoz, M.P., J.A. Dávila, Y. Loarce & E. Ferrer, 1996. Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39: 112–117.PubMedGoogle Scholar
  25. Stückrath, P.,, 1972. Erdbeeranbau. Eugen Ulmer Verlag, Stuttgart, p. 45.Google Scholar
  26. Suazo, A. & H.G. Hall, 1999. Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA. Biotechniques 26: 704–709.PubMedGoogle Scholar
  27. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414.PubMedGoogle Scholar
  28. Vuylsteke, M., R. Mank, R. Antonise, E. Bastiaans, M.L. Senior, C.W. Stuber, A.E. Melchinger, T. Lübberstedt, X.C. Xia, P. Stam, M. Zabeau & M. Kuiper, 1999. Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99: 921–935.CrossRefGoogle Scholar
  29. Waugh, R., N. Bonar, E. Baird, B. Thomas, A. Graner, P. Hayes & W. Powell, 1997. Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255: 311–321.PubMedCrossRefGoogle Scholar
  30. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18(22): 6531–6535.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mirosław Tyrka
    • 1
  • Piotr Dziadczyk
    • 2
  • Jerzy A. Hortyński
    • 2
  1. 1.Institute of Genetics and Plants BreedingLublinPoland
  2. 2.Department of Genetics and Horticultural Plants BreedingLublinPoland

Personalised recommendations