Advertisement

Pharmaceutical Research

, Volume 8, Issue 9, pp 1079–1086 | Cite as

Liposomes and Nanoparticles in the Treatment of Intracellular Bacterial Infections

  • Patrick Couvreur
  • Elias Fattal
  • Antoine Andremont
Article

Abstract

The treatment of infections caused by obligate or facultative intracellular microorganisms is difficult because most of the available antibiotics have either poor intracellular diffusion and retention or reduced activity at the acidic pH of the lysosomes. The need for antibiotics with greater intracellular efficacy led to the development of endocytosable drug carriers, such as liposomes and nanoparticles, which mimic the entry path of the bacteria by penetrating the cells into phagosomes or lysosomes. This Review assesses the potential of liposomes and nanoparticles in the targeted antibiotic therapy of intracellular bacterial infections and diseases and the pharmaceutical advantages and limitations of these submicron delivery systems.

intracellular infections liposomes nanoparticles intracellular targeting of antibiotics lysosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. A. Horwitz. Phagocytosis of microorganism. Rev. Infect. Dis. 4:104–123 (1982).Google Scholar
  2. 2.
    P. Tulkens. The design of antibiotics capable of an intracellular action. In P. Buri and R. Gumma (eds.), Aims, Potentialities and Problems in Drug Targeting, Elsevier, Amsterdam, 1985, pp. 179–194.Google Scholar
  3. 3.
    P. Tulkens and A. Trouet. The uptake and intracellular accumulation of aminoglycosides antibiotics in lysosomes of cultured rat fibroblasts. Biochem. Pharmacol. 27:415–424 (1978).Google Scholar
  4. 4.
    A. Trouet and P. Tulkens. Intracellular penetration and distribution of antibiotics: The basis for an improved chemotherapy of intracellular infections. In L. Ninet, P. E. Bost, D. H. Bouanchaud, and J. Florent (eds), The Future of Antibiotherapy and Antibiotic Research, Academic Press, London, 1981, pp. 337–349.Google Scholar
  5. 5.
    J. D. Johnson, W. L. Hand, J. B. Francis, N. King-Thompson, and R. W. Corwin. Antibiotic uptake by alveolar macrophages. J. Lab. Clin. Med. 95:429–439 (1980).Google Scholar
  6. 6.
    C. E. Swenson, M. C. Popescu, and R. S. Ginsberg. Preparation and use of liposomes in the treatment of microbial infections. Crit. Rev. Microbiol. 15:S1–S31 (1988).Google Scholar
  7. 7.
    E. Fattal, J. Rojas, L. Roblot-Treupel, A. Andremont, and P. Couvreur. Ampicillin-loaded liposomes and nanoparticles: Comparison of drug loading, drug release and in vitro antimicrobial activity. J. Microencapsul., in press (1991).Google Scholar
  8. 8.
    L. D. Mayer, M. B. Bally, M. J. Hope, and P. R. Cullis. Techniques for encapsulating bioactive agents into liposomes. Chem. Phys. Lipids 40:333–345 (1986).Google Scholar
  9. 9.
    G. Scherphoff, F. Roerdink, D. Hoekstra, J. Zborowski, and E. Wisse. Stability of liposomes in presence of blood constituants: Conequences for uptake of liposomal lipid and entrappeed compounds by rat liver cells. In G. Gregoriadis and A. C. Allison (eds.), Liposomes in Biological Systems, John Wiley, New York, 1980, pp. 179–209.Google Scholar
  10. 10.
    A. Gabizon and D. Papahadjopoulos. Liposomes formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 85:6949–6953 (1988).Google Scholar
  11. 11.
    T. M. Allen and A. Choun. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223:42–46 (1987).Google Scholar
  12. 12.
    S. M. Gruner, R. P. Lenk, A. S. Janoff, and M. J. Ostro. Novel multilayered lipid vesicles: Comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles. Biochemistry 24:2833–2842 (1985).Google Scholar
  13. 13.
    C. Kirly and G. Gregoriadis. Dehydratation-rehydratation vesicles: A simple method for high yield drug entrapment in liposomes. Biotechnology 11:979–984 (1984).Google Scholar
  14. 14.
    T. Hernandez-Caselles, J. Villalain, and J. C. Gomez-Fernandez. Stability of liposomes on long term storage. J. Pharm. Pharmacol. Res. 1:159–163 (1984).Google Scholar
  15. 15.
    J. H. Crowe and L. M. Crowe. Factors affecting the stability of drug liposomes. Biochim. Biophys. Acta 939:327–334 (1988).Google Scholar
  16. 16.
    L. M. Crowe, C. Womersley, J. H. Crowe, D. Reid, L. Appel, and A. S. Rudolph. Biochim. Biophys. Acta 861:131–140 (1986).Google Scholar
  17. 17.
    T. D. Madden, M. B. Bally, M. J. Hope, P. R. Cullis, H. P. Schieren, and A. S. Janoff. Protection of large unilamellar vesicles by trehalose during dehydratation: Retention of vesicle contents. Biochim. Biophys. Acta 817:67–74 (1985).Google Scholar
  18. 18.
    S. Henry-Michelland, M. J. Alonso, A. Andremont, P. Maincent, J. Sauzières, and P. Couvreur. Attachment of antibiotics to nanoparticles: Preparation, drug-release and antimicrobial activity in vitro. Int. J. Pharm. 35:121–127 (1987).Google Scholar
  19. 19.
    P. Couvreur, M. Roland, and P. Speiser. U.S. patent 4:489–555 (1984).Google Scholar
  20. 20.
    P. Couvreur. Polyalkylcyanoacrylates as colloidal drug carriers. Crit. Rev. Ther. Drug Carrier Syst. 5:1–20 (1988).Google Scholar
  21. 21.
    C. Verdun, P. Couvreur, H. Vranckx, V. Lenaerts, and M. Roland. Development of a nanoparticulate controlled-release formulation for human use. J. Control. Release 3:205–210 (1986).Google Scholar
  22. 22.
    V. Guise, J. Y. Drouin, J. Benoit, J. Mahuteau, P. Dumont, and P. Couvreur. Vidarabine-loaded nanoparticles: a physicochemical study. Pharm. Res. 7:736–741 (1990).Google Scholar
  23. 23.
    G. Poste. Liposome targeting in vivo: Problems and opportunites. Biol. Cell. 47:19–39 (1983).Google Scholar
  24. 24.
    L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, and P. Speiser. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int. J. Pharm. 15:335–345 (1983).Google Scholar
  25. 25.
    P. Couvreur, P. Tulkens, M. Roland, A. Trouet, and P. Speiser. Nanocapsules, a new lysosomotropic carrier. FEBS Lett. 84:323–326 (1977).Google Scholar
  26. 26.
    J. V. Desiderio and S. G. Campbell. Liposome-encapsulated cephalotin in the treatment of experimental murine salmonellosis. J. Reticuloendothel. Soc. 34:279–287 (1983).Google Scholar
  27. 27.
    J. V. Desiderio and S. G. Campbell. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalotin. J. Infect. Dis. 148:563–570 (1983).Google Scholar
  28. 28.
    E. Fattal, M. Youssef, P. Couvreur, and A. Andremont. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob. Agents Chemother. 33:1540–1543 (1989).Google Scholar
  29. 29.
    E. Fattal, J. Rojas, M. Youssef, P. Couvreur, and A. Andremont. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob. Agents Chemother., in press (1991).Google Scholar
  30. 30.
    M. Youssef, E. Fattal, M. J. Alonso, L. Roblot-Treupel, J. Sauzières, C. Tancrède, A. Omnès, P. Couvreur, and A. Andremont. Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrob. Agents Chemother. 32:1204–1207 (1988).Google Scholar
  31. 31.
    I. A. J. M. Bakker-Woudenberg, A. F. Lokerse, F. H. Roerdink, D. Regts, and M. F. Michel. Free versus liposome-entrapped ampicillin in treatment of infection due to Listeria monocytogenes in normal and athymic nude mice. J. Infect. Dis. 151:917–924 (1985).Google Scholar
  32. 32.
    I. A. J. M. Bakker-Woudenberg, A. F. Lokerse, J. C. V. van den Berg, and F. H. Roerdink. Liposome-encapsulated ampicillin against Listeria monocytogenes in vivo and in vitro. Infection 16(Suppl. 2):S165–S170 (1988).Google Scholar
  33. 33.
    I. A. J. M. Bakker-Woudenberg, A. F. Lokerse, and F. H. Roerdink. Antibacterial activity of liposome-entrapped ampicillin in vitro and in vivo in relation to the lipid composition. J. Pharmacol. Exp. Ther. 251:321–327 (1989).Google Scholar
  34. 34.
    T. Hernandez-Caselles, A. Vera, F. Crespo, J. Villalain, and J. C. Gomez-Fernandez. Treatment of Brucella melitensis in mice by use of liposome-encapsulated gentamicin. Am. J. Vet. Res. 50:1486–1488 (1989).Google Scholar
  35. 35.
    R. A. Schwendener, P. A. Lagocki, and Y. E. Rahman. The effect of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim. Biophys. Acta 772:93–101 (1984).Google Scholar
  36. 36.
    J. Sunamoto, M. Goto, T. Tida, K. Hara, A. Saito, and A. Tomonaga. Unexpected tissue distribution of liposomes coated with amylopectin derivatives and successful use in the treatment of experimental Legionaires Disease. In G. Gregoriadis, G. Poste, J. Senior, and A. Trouet (eds.), Receptor-Mediated Targeting of Drugs, Plenum Press, New York, 1983, p. 359.Google Scholar
  37. 37.
    M. W. Fountain, S. J. Weiss, A. G. Fountain, A. Shen, and R. P. Lenk. Treatment of Brucella canis and Brucella abortus in vitro and in vivo by stable plurilamellar vesicle-encapsulated aminoglycosides. J. Infect. Dis. 152:529–535 (1985).Google Scholar
  38. 38.
    M. Stevenson, A. J. Baillie, and M. E. Richards. Enhanced activity of streptomycin and chloramphenicol against intracellular Escherichia coli in the J774 macrophage cell line mediated by liposome delivery. Antimicrob. Agents Chemother. 24:742–749 (1983).Google Scholar
  39. 39.
    T. Tadakuma, N. Ikewaki, T. Nasuda, M. Tsutsumi, S. Saito, and K. Saito. Treatment of experimental salmonellosis in mice with streptomycin entrapped into liposomes. Antimicrob. Agents Chemother. 28:28–32 (1985).Google Scholar
  40. 40.
    F. W. Milward, P. Nicoletti, and E. Hoffmann. Effectiveness of various therapeutic regimens for bovine brucellosis. Am. J. Vet. Res. 45:1825–1828 (1984).Google Scholar
  41. 41.
    N. Düzgünes, V. K. Perumal, L. Kesavalu, J. A. Goldstein, R. J. Debs, and P. R. J. Gangadharam. Enhanced effect of liposome encapsulated amikacin on Mycobacterium avium-M. intracellulare complex infection in Beige mice. Antimicrob. Agents Chemother. 32:1404–1411 (1988).Google Scholar
  42. 42.
    P. J. van den Broek. Antimicrobial drugs, microorganisms and phagocytes. Rev. Infect. Dis. 11:213–245 (1989).Google Scholar
  43. 43.
    W. Brumfitt, A. A. Glynn, and A. Percival. Factors influencing the phagocytosis of Escherichia coli. Br. J. Exp. Pathol. 46:215–226 (1965).Google Scholar
  44. 44.
    R. L. Magoffin and W. W. Spink. The protection of intracellular Brucella against streptomycin alone and in combination with other antibiotics. J. Lab. Clin. Med. 37:924–930 (1951).Google Scholar
  45. 45.
    V. Guise, P. Jaffray, J. Delattre, F. Puisieux, M. Adolphe, and P. Couvreur. Comparative cell uptake of propidium iodine associated with liposomes or nanoparticles. Cell. Mol. Biol. 33:397–405 (1987).Google Scholar
  46. 46.
    J. Mounier, A. Ryter, M. Coquis-Rondon, and P. J. Sansonetti. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect. Immun. 58:1048–1058 (1989).Google Scholar
  47. 47.
    M. L. Bernardin, J. Mounier, H. d'Hauteville, M. Coquis-Rondon, and P. J. Sansonetti. Identification of ics A, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86:3867–3871 (1989).Google Scholar
  48. 48.
    M. K. R. Chowdhury, R Goswami, and P. Chakrabarti. Liposome-entrapped penicillins in growth inhibition of some penicillin-resistant bacteria. J. Appl. Bacteriol. 51:223–227 (1981).Google Scholar
  49. 49.
    M. C. Nacucchio, M. J. Gatto-Bellora, D. O. Sordelli, and M. D'Aquino. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob. Agents Chemother. 27:137–139 (1985).Google Scholar
  50. 50.
    K. H. Sekeri-Pataryas, C. Vakirtzi-Lemonias, H. A. Pataryas, and J. N. Legakis. Liposomes as carriers of 14C-labelled penicillin and 125I-labelled albumin through the cell wall of Pseudomonas aeruginosa. Int. J. Biol. Macromol. 7:379–381 (1985).Google Scholar
  51. 51.
    C. L. Celum, R. E. Chaisson, G. W. Rutherford, J. L. Barharnt, and D. F. Echenberg. Incidence of salmonellosis in patients with AIDS. J. Infect. Dis. 156:998–1002 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Patrick Couvreur
    • 1
  • Elias Fattal
    • 1
  • Antoine Andremont
    • 2
  1. 1.Laboratoire de Pharmacie Galénique et Biopharmacie, URA CNRS 1218University of Paris XIParisFrance
  2. 2.Laboratoire d’Ecologie Microbienne, Institut Gustave-Roussy, and Laboratoire de MicrobiologieUniversity of Paris XIParisFrance

Personalised recommendations