Plant Ecology

, Volume 160, Issue 1, pp 25–42 | Cite as

The dynamics of mediterranean shrubs species over 12 years following perturbations

  • Leonor Calvo
  • Reyes Tárrega
  • Estanislao De Luis


The response of woody species to experimental burning, cutting andploughing was studied for a period of twelve years in a shrub community in NWSpain. The treatments represent the perturbations most frequently imposed bymanon these shrub communities throughout history. The response to burning is muchfaster than the response to cutting. The response to ploughing is slower due tothe regeneration mechanism that species use: germination. In general, thedominant species, Erica australis, influences theregeneration patterns of the rest of the species, which make up the community.There is a significant increase in the cover of woody species until the fourthyear, and of herbaceous species until the third year. Subsequently,Erica australis attains dominance, returning to itsoriginal spatial occupancy and cover values, removing the herbaceous speciesandnegatively influencing the growth of woody ones like Halimiumumbellatum, Halimium alyssoides and Quercuspyrenaica. Both Erica australis andChamaespartium tridentatum regenerated by sprouting in theburnt and cut plots, and by germination in the ploughed plot.Arctostaphylos uva-ursi only recovers after burning andploughing. Halimium alyssoides, Halimium umbellatum, Ericaumbellata and Calluna vulgaris regenerate bygermination in the three plots. Differences in cover values and spatialoccupancy during the first years of succession tend to be eliminated twelveyears after treatment and most of the species tend to recover their initialcover values. These shrubland communities have a high degree of resilience dueto the strong sprouting potential of the component species.

Burnt Cut Germination Mediterranean shrubland Ploughed Resprout 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alon G. and Kadmon R. 1996. Effect of successional stages on the establishment of Quercus calliprinos in an East Mediterranean maquis. Israel Journal Plant Science 44: 335-345.Google Scholar
  2. Barbero M.G., Loisel B.R. and Quézel P. 1990. Changes and perturbations of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87: 151-173.Google Scholar
  3. Baudry J. 1985. Utilisation des concepts de Landscape Ecology pour l'analyse de l'espace rural. University Rennes I, Rennes, France.Google Scholar
  4. Baudry J., Jouin A. and Thenail C. 1998. La diversité des bordures de champ dans les exploitations agricoles de pays de bocage. Etudes et Recherches sur les Systèmes Agraires 31: 117-134.Google Scholar
  5. Berdowski J.J.M. 1993. The effect of external stress and perturbation factors on Calluna-dominated heathland vegetation. In: Aerst R. and Heil G.W. (eds), Heathlands: Patterns and processes in a changing environment. Kluwer Academic Publishers, Dordrecht, pp. 85-124.Google Scholar
  6. Bell T.L. and Ojeda F. 1999. Underground starch storage in Erica species of the Cape Floristic Region differences between seeders and resprouters. New Phytologist 144: 143-152.Google Scholar
  7. Calvo L. 1993. Regeneración vegetal en comunidades de Quercus pyrenaica Willd. después de incendios forestales. Análisis especial de comunidades de matorral. Universidad de León, Spain.Google Scholar
  8. Calvo L., Tárrega R. and Luis E. 1992. The effect of human factors (cutting, burning and uprooting) on experimental heathland plots. Pirineos 140: 15-27.Google Scholar
  9. Calvo L., Tárrega R. and Luis E. 1998a. Space-time distribution patterns of Erica australis L. Subsp. aragonensis (Willk) after experimental burning, cutting, and ploughing. Plant Ecology 137: 1-12.Google Scholar
  10. Calvo L., Tárrega R. and Luis E. 1998b. Twelve years of vegetation changes after fire in an Erica australis community. In: Trabaud L. (ed.), Fire Management and landscape Ecology. Fairfield, Washington, pp. 123-136.Google Scholar
  11. Calvo L., Tárrega R. and Luis E. 1999. Post-fire succession in two Quercus pyrenaica communities with different perturbations histories. Annals of Forest Science 56: 441-447.Google Scholar
  12. Calvo L., Tárrega R. and Luis E. 1991. Regeneration in Quercus pyrenaica ecosystems after surface fire. International Journal of Wildland Fire 1: 205-210.Google Scholar
  13. Canadell J. and López-Soria L. 1998. Lignotuber reserves support regrowth following clipping of two Mediterránean shrubs. Functional Ecology 12: 31-38.Google Scholar
  14. Casal M. 1985. Cambios en la vegetación del matorral tras incendio en Galicia. In: Estudios sobre prevención y efectos ecológicos de los incendios forestales. Ministerio de Agricultura Pesca y Alimentación, Madrid, pp. 93-101.Google Scholar
  15. Casal M. 1987. Post-fire dynamics of shrublands dominated by Papilionacea plants. Influence of fire on the stability of Mediterranean forest ecosystems. Ecología Mediterránea XIII: 87-98. CHLOE 1.0. J.S. Rodríguez, J. Baudry, F. Burel. INRA SAD. Armorique/CNRS-UMR. Ecobio 6553. France.Google Scholar
  16. Clement B. and Touffet J. 1990. Plant strategies and secondary succession on Brittany heathlands after several fires. Journal of Vegetation Science 1: 195-202.Google Scholar
  17. Clemente A.S., Rego F.C. and Correia O.A. 1996. Demographic patterns and productivity of post-fire regeneration in Portuguese Mediterranean maquis. International Journal Wildland Fire 6: 5-12.Google Scholar
  18. Cody M.L. 1986. Diversity, rarity and conservation in Mediterranean-climate regions. In: Soule M.E. (ed.), Conservation biology: The science of scarcity and diversity. Sinauer, Sunderland, M.A., USA, pp. 122-152.Google Scholar
  19. Del Barrio J., Luis-Calabuig E. and Tárrega R. 1999. Vegetative response of Arctostaphylos uva-ursi to experimental cutting and burning. Plant Ecology 145: 187-191.Google Scholar
  20. Fuentes E.R. and Gutiérrez J.R. 1981. Intra-and interspecific competition between matorral shrubs. Acta Oecologica 2:283-289.Google Scholar
  21. Forgeard F. 1990. Development, growth and species richness on Brittany heathlands after fire. Acta Oecologica 11: 191-213.Google Scholar
  22. García Novo F. 1977. The effects of fire on the vegetation of Doñana National Park (Spain). Symp. Environm. Consequences Fire and Fuel management in Mediterranean Ecosystems. USADA For. Serv. Gen. Tech. Rep. WO-3: 318-325.Google Scholar
  23. Gill A.M. 1981. Nutrient losses during a winter low-intensity prescribed fire in a Mediterranean forest. Plant. Soil. 120: 69-77.Google Scholar
  24. Gimingham C.H. 1960. Biological flora of the Briish Isles: Calluna vulgaris (L.) Hull. Journal of Ecology 48: 455-483.Google Scholar
  25. González Rabanal F. 1992. Efecto del fuego sobre la germinación de especies de ecosistemas de matorral. Universidad de Santiago de Compostela.Google Scholar
  26. Grove A.T. 1996. The historical context: Before 1850. In: Brandt C.J. and Thornes J. (eds), Mediterranean desertification and land use. J. Wiley & Sons, Chichester, pp. 13-28.Google Scholar
  27. Hobbs R.J. and Mooney H.A. 1985. Vegetative regrowth following cutting in the shrub Baccharis pilularis spp. Consanguinea (DC) C.B. Wolf. AMER. J. Bot. 72: 514-519. IDRISI. 2.0. Clark Labs for Technology and Geographic Analisis. Clarck University. USA.Google Scholar
  28. Iwasa Y. and Kubo T. 1997. Optimal size of storage for recovery after unpredictable perturbations. Evolutionary Ecology 11: 41-65.Google Scholar
  29. Junta de Castilla y León 1987. Mapa de suelos de Castilla y León. Junta de Castilla y León, Spain.Google Scholar
  30. Kadmon R. and Harari-Kremer R. 1999. Landscape-scale regeneration dynamics of disturbed Mediterranean maquis. Journal of Vegetation Science 10: 393-402.Google Scholar
  31. Keeley J.E. 1992. Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology 73: 1194-1208.Google Scholar
  32. Keeley J.E. and Zedler P.H. 1978. Reproduction of chaparral shrubs after fire: a comparison of sprouting and seedling strategies. American Midland Naturalist 99: 142-161.Google Scholar
  33. Keeley D.A. and Parker V.T. 1990. Seed bank survival and dynamics in sprouting and non-sprouting Arctostaphylos species. American Midland Naturalist 124: 114-123.Google Scholar
  34. Le Houerou H.N. 1993. Land degradation in Mediterranean Europe: can agroforestry be a part of the solution? A prospective review. Agroforestry Systems 21: 43-61.Google Scholar
  35. Le Maitre D.C. and Midgley J.J. 1992. Plant reproductive ecology. In: Cowling R.M. (ed.), The Ecology of Fynbos. Nutrients, Fire and Diversity. Oxford University Press, Capetown, pp. 135-174.Google Scholar
  36. Luis E., Garzón E., Tárrega R., Zuazua T. and Calvo L. 1989a. Proyecto I+D 10/84 Agroenergética: Comunidades de matorral. Options Méditerranéennes. Series Séminaires. 3: 131-135.Google Scholar
  37. Luis E., Tárrega R. and Calvo L. 1989b. Biomass and biomass regeneration after perturbation in shrub communities in León province (NW Spain). In: Grassi G., Gosse G. and Dos Santos G. (eds), Biomass for Energy and Industry. Elsevier Applied Science, London, pp. 1114-1120.Google Scholar
  38. Luis-Calabuig E., Tárrega R., Calvo L., Marcos E. and Valbuena L. 2000. History of landscape changes in northwest Spain according to land use and management. In: Trabaud L. (ed.), Life and Environment in the Mediterranean. Wit press, Southampton, pp. 43-86.Google Scholar
  39. Lloret F. and Vilá M. 1997. Clearing of vegetation in Mediterranean garrigue: response after a wildfire. Forest Ecology and Management 93: 227-234.Google Scholar
  40. Malanson G.P. 1985. Simulation of competition between alternative shrub life history strategies through recurrent fires. Ecology Modelling 27: 271-283.Google Scholar
  41. Malanson G.P. and O'Leary J.F. 1982. Post-fire regeneration strategies of Californian coastal sage shrubs. Oecologia 53: 355-358.Google Scholar
  42. Margaris N.S., Koutsidou E. and Giourga Ch. 1996. Changes in traditional Mediterranean land-use systems. In: Brandt C.J. and Thornes J. (eds), Mediterranean Desertification and land-use. J. Wiley & Sons, Chichester, pp. 29-42.Google Scholar
  43. Menges E.S. and Kohfeldt N. 1995. Life history strategies of Florida scrub plants in relation to fire. Bulletin of the Torrey Botanical Club 122: 282-297.Google Scholar
  44. Ministerio de Agricultura 1980. Caracterización Agroclimática de la provincia de León. Dirección General de Producción Agraria. Subdirección General de la Producción Vegetal, Madrid, Spain.Google Scholar
  45. Ministerio de Agricultura 1984. Mapa de cultivos y aprovechamientos de la provincia de León. Dirección General de Producción Agraria, Madrid, Spain.Google Scholar
  46. Moreno J.M. and Oechel W.C. 1994. The Role of Fire in Mediterranean-type Ecosystems. Springer-Verlag, Nueva York, Estados Unidos.Google Scholar
  47. Moreno J.M., Cruz A. and Oechel W.C. 1999. Allometric relationships in two lignotuberous species from Mediterranean-type climate areas of Spain and California. Journal of Mediterranean Ecology 1: 49-60.Google Scholar
  48. Naveh Z. 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio 29: 199-208.Google Scholar
  49. Naveh Z. 1999. The role of fire as an evolutionary and ecological factor on the landscapes and vegetation of Mt. Carmel. Journal of Mediterranean Ecology 1: 11-25.Google Scholar
  50. Naveh Z. and Dan J. 1973. The human degradation of Mediterranean landscapes in Israel. In: Di Castri F. and Mooney H.A. (eds), Mediterranean Type Ecosystems: The Role of Nutrients. Springer-Verlag, Berlin, pp. 373-390.Google Scholar
  51. Obeso J.R. and Vera M.L. 1996. Resprouting after experimental fire application and seed germination in Erica vagans. Orsis 11: 155-163.Google Scholar
  52. Ojeda F., Marañon T. and Arroyo J. 1996. Postfire regeneration of a Mediterranean heathland in southern Spain. International Journal of Wildland fire 6: 191-198.Google Scholar
  53. Ojeda F. 2001. El fuego como facto clave en la evolución de las plantas mediterráneas. In: Zamora R. and Pugnaire F.I. (eds), Ecosistemas Mediterráneos. Análisis functional. CSIC. AEET, Madrid, pp. 319-349.Google Scholar
  54. Pate J.S., Froend R.H., Bowen B.J., Hansen A. and Kuo J. 1990. Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. Australia. Annals of Botany 65: 585-601.Google Scholar
  55. Pausas J. 1999. Mediterranean vegetation dynamics: modelling, problems and functional types. Plant Ecology 140: 27-39.Google Scholar
  56. Pausas J. and Vallejo V.R. 1999. The role of fire in European Mediterranean ecosistemas. In: Remote Sensing of Large Fires in the European Mediterranean Basin. Springer, Berlin, pp. 3-16.Google Scholar
  57. Rego F.C., Bunting S.C. and da Silva J.M. 1991. Changes in the fire understory vegetation following prescribed fire in maritime pine forest. Forest Ecology and Management 41: 21-31.Google Scholar
  58. Riba M. 1997. Effects of cutting and rainfall pattern on resprouting vigour and growth of Erica arborea L. Journal of Vegetation Science 8: 401-404.Google Scholar
  59. Rivas Martínez S. 1979. Brezales y Jarales de Europa Occidental. Lazaroa 1: 16-119.Google Scholar
  60. Rívas Martínez S., Gandullo J.M., Allué J.L., Montero J.L. and González J.L. 1987. Memoria del mapa de series de vegetación de España. ICONA, Madrid, Spain.Google Scholar
  61. Scheffe H. 1959. The Analysis of Variance. John Wiley & Sons Inc., New York.Google Scholar
  62. Sokal R.R. and Rohlf F.J. 1979. Biometria. Principios y métodos estadísticos en la investigación biológica. Blume ediciones, Madrid.Google Scholar
  63. Thanos C.A., Georghiou K., Kadis C.C. and Pantazi C. 1992. Cistaceae: A plant family with hard seeds. Israel Journal of Botany 41: 251-263.Google Scholar
  64. Tárrega R., Calvo L. and Trabaud L. 1992. Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102: 139-147.Google Scholar
  65. Tárrega R., Luis Calabuig E. and Alonso I. 1995. Comparison of the regeneration after burning, cutting and ploughing in a Cistus ladanifer shrubland. Vegetatio 120: 59-67.Google Scholar
  66. Tárrega R., Luis Calabuig E. and Alonso I. 1997. Space-time heterogeneity in the recovery after experimental burning and cutting in a Cistus laurifolius shrubland. Plant Ecology 129: 179-187.Google Scholar
  67. Trabaud L. 1980. Impact biologique et écologique des feux de végétation sur l'organisation, la structure et l'evolution de la végétation des garrigues du Bas-Languedoc. Etat Univ. Sci. Tech. Languedoc, Montpellier, Francia.Google Scholar
  68. Trabaud L. 1991. Le feu est-il un factor de changement pour les systèmes écologiques du bassin méditerranéen? Sécheresse 3: 163-174.Google Scholar
  69. Trabaud L. 2000. Seeds: their soil bank and their role in post-fire recovery of ecosystems of the Mediterranean basin. In: Trabaud L. (ed.), Life and Environment in the Mediterranean. Wit press, Southampton, pp. 229-259.Google Scholar
  70. Tyler C.M. 1995. Factors contributing to postfire seedling establishment in chaparral: direct and indirect effects of fire. Journal of Ecology 83: 1009-1020.Google Scholar
  71. Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Moore D.M., Walters S.M. et al. 1964-1980. Flora Europea. Cambridge University Press.Google Scholar
  72. Valbuena L., Nuñez R. and Calvo L. 2001. Role of seed bank in the Pinus stand regeneration in NW of Spain after wildfire. Web Ecology 2: 22-31.Google Scholar
  73. Vazquez A. and Moreno J.M. 1998. Patterns of lightning-and people-caused fires in peninsular Spain. International Journal of Wildland Fire 8: 103-115.Google Scholar
  74. Whittaker R.H. 1960. Vegetation of the Siskiyou Mountains Oregon and California. Ecol. Monogr. 30: 279-338.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Leonor Calvo
    • 1
  • Reyes Tárrega
    • 1
  • Estanislao De Luis
    • 1
  1. 1.Area of Ecology. Faculty of BiologyUniversity of LeónLeónSpain

Personalised recommendations