Pharmaceutical Research

, Volume 7, Issue 2, pp 167–169 | Cite as

Effect of Molecular Weight on the Lymphatic Absorption of Water-Soluble Compounds Following Subcutaneous Administration

  • Andreas Supersaxo
  • Wayne R. Hein
  • Hans Steffen


The lymphatic absorption of four water-soluble compounds with different molecular weights (MW) was determined by measuring their cumulative recovery in lymph draining from the site of s.c. administration in sheep. The cumulative recoveries (% of dose, mean ± SD; N = 3) were 4.0 ± 1.5 (5-fluoro-2′-deoxyuridine, MW 246.2), 21.0 ± 7.1 (inulin, MW 5200), 38.6 ± 6.7 (cytochrome c, MW 12,300), and 59.5 ± 7.7 [human recombinant interferon (rIFN) alpha-2a, MW 19,000], respectively. Our data show that in the investigated MW range, there is a linear relationship between the molecular weight and the proportion of the dose absorbed lymphatically. An increase in molecular weight results in an increased lymphatic absorption. Molecules with MW > 16,000 are absorbed mainly by the lymphatics which drain the application site. The knowledge gained in this investigation may help to improve the mode of administration and therapeutic efficacy of endogenous proteins whose targets are lymphoid cells (e.g., interferons, interleukins). Practical implications for the clinical use of such proteins are discussed.

Water-soluble compounds subcutaneous administration lymphatic absorption molecular weight sheep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Tomlinson. Adv. Drug Deliv. Rev. 1:127–131 (1987).Google Scholar
  2. 2.
    J. H. Lewis. JAMA 76:1342–1345 (1921).Google Scholar
  3. 3.
    M. E. Field and C. K. Drinker. Am. J. Physiol. 97:40–51 (1931).Google Scholar
  4. 4.
    J. N. Weinstein, M. A. Steller, D. G. Covell, O. D. Holton, A. M. Keenan, S. M. Sieber, and R. J. Parker. Cancer Treat. Rep. 68:257–264 (1984).Google Scholar
  5. 5.
    A. Supersaxo, W. Hein, H. Gallati, and H. Steffen. Pharm. Res. 5:472–476 (1988).Google Scholar
  6. 6.
    S. Pestka. Arch. Biochem. Biophys. 221:1–37 (1983).Google Scholar
  7. 7.
    J. G. Hall and B. Morris. Q. J. Exp. Physiol. 47:360–369 (1962).Google Scholar
  8. 8.
    M. Miyasaka and Z. Trnka. In I. Lefkovits, and B. Pernis (eds.), Immunological Methods, Vol. III, Academic Press, New York, 1985, p. 403.Google Scholar
  9. 9.
    H. Gallati. J. Clin. Chem. Clin. Biochem. 22:907–914 (1982).Google Scholar
  10. 10.
    S. Muranishi, K. Takada, H. Yoshikawa, and M. Murakami. In S. S. Davies, L. Illum, and E. Tomlinson (eds.), Delivery Systems for Peptide Drugs, Plenum Press, New York and London, 1986, pp. 177–189.Google Scholar
  11. 11.
    C. C. C. O'Morchoe and P. J. O'Morchoe. Lymphology 20:205–209 (1987).Google Scholar
  12. 12.
    L. V. Leak. J. Cell Biol. 50:300–323 (1971).Google Scholar
  13. 13.
    G. Poste. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:1–2 (1988).Google Scholar
  14. 14.
    V. Bocci. Immunol. Today 6:7–9 (1985).Google Scholar
  15. 15.
    V. Bocci. Immunology 64:1–9 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Andreas Supersaxo
    • 1
  • Wayne R. Hein
    • 2
  • Hans Steffen
    • 1
  1. 1.Pharmaceutical Research/Pharmacy R + DF. Hoffmann-La Roche LtdBasleSwitzerland
  2. 2.Basle Institute for ImmunologyBasleSwitzerland

Personalised recommendations