Journal of Automated Reasoning

, Volume 28, Issue 4, pp 337–369 | Cite as

Checking Simple Properties of Transition Systems Defined by Thue Specifications

  • Teodor Knapik


In (possibly infinite) deterministic labeled transition systems defined by Thue congruences, labels are considered as functions of states into states. This paper provides a method for computing domains of such functions for a large class of transition systems. The latter are related to model checking of transition systems defined by Thue congruences.

infinite-state systems automated deduction string-rewriting formal verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A.: Finite Transition Systems, Prentice-Hall International, 1994.Google Scholar
  2. 2.
    Arnold, A. and Nivat, M.: Comportements de processus, in Colloque AFCET “Les Mathématiques de l'Informatique”, 1982, pp. 35–68.Google Scholar
  3. 3.
    Autebert, J.-M., Berstel, J. and Boasson, L.: Context-free languages and push-down automata, in G. Rozenberg and A. Salomaa (eds.), Word, Language, Grammar, Handbook of Formal Languages 1, Springer-Verlag, 1997, pp. 111–174.Google Scholar
  4. 4.
    Avenhaus, J. and Madlener, K.: Theorem proving in hierarchical clausal specifications, Seki Report SR-95-14, Fachbereich Informatik, Universität Kaiserslautern, 1995.Google Scholar
  5. 5.
    Büchi, J. R.: Regular canonical systems, Archiv Math. Logik Grundlagen. 6 (1964), 91–111.Google Scholar
  6. 6.
    Book, R. V. and Otto, F.: String-Rewriting Systems, Texts and Monographs in Comput. Sci., Springer-Verlag, 1993.Google Scholar
  7. 7.
    Calbrix, H. and Knapik, T.: A string-rewriting characterization of Muller and Shupp's contextfree graphs, in V. Arvind and R. Ramanujam (eds.), 18th International Conference on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. 1530, Chennai, 1998, pp. 331–342.Google Scholar
  8. 8.
    Caucal, D.: On the regular structure of prefix rewriting, Theoret. Comput. Sci. 106 (1992), 61–86.Google Scholar
  9. 9.
    Hennessy, M. and Milner, R.: Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1985), 137–162.Google Scholar
  10. 10.
    Hopcroft, J. E. and Ullman, J. D.: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.Google Scholar
  11. 11.
    Knapik, T.: A procedure for computing normal forms of certain rational sets, in M. Tchuente (ed.), Proceedings of the 4th African Conference on Research in Computer Science, Dakar, Oct. 1998. INRIA - Press Universitaires de Dakar, 1998, pp. 211–225.Google Scholar
  12. 12.
    Knapik, T. and Calbrix, H.: The graphs of finite monadic semi-Thue systems have a decidable monadic second-order theory, in C. S. Calude and M. J. Dinneen (eds.), Combinatorics, Computation and Logic '99, Auckland, Jan. 1999, Springer-Verlag, 1999, pp. 273–285.Google Scholar
  13. 13.
    Knapik, T. and Calbrix, H.: Thue specifications and their monadic second-order properties, Fund. Inform. 39(3) (1999), 305–325.Google Scholar
  14. 14.
    Knapik, T. and Payet, É.: Synchronized product of linear bounded machines, in G. Ciobanu and G. Paun (eds.), 12th International Symposium on Foundamentals of Computation Theory, Lecture Notes in Comput. Sci. 1684, Ia¸si, Aug. 1999, pp. 362–373.Google Scholar
  15. 15.
    Kuhn, N. and Madlener, K.: A method for enumerating cosets of a group presented by a canonical system, in G. Gonnet (ed.), Proceedings of ISSAC '89, New York, 1989, pp. 338–350.Google Scholar
  16. 16.
    Narendran, P. and Otto, F.: Some polynomial-time algorithms for finite monadic Church-Rosser Thue systems, Theoret. Comput. Sci. 68 (1989), 319–332.Google Scholar
  17. 17.
    Payet, É.: Infinite graphs and synchronized product, Fund. Inform. 44(3) (2000), 265–290.Google Scholar
  18. 18.
    Perrin, D.: Finite automata, in J. van Leeuwen (ed.), Formal Models and Semantics, Handbook of Theoretical Computer Science, Vol. B, Elsevier, 1990, pp. 3–57.Google Scholar
  19. 19.
    Shoenfield, J. R.: Mathematical Logic, Addison-Wesley, 1967.Google Scholar
  20. 20.
    Vardi, M. Y. and Wolper, P.: An automata-theoretic approach to automatic program verification, in Proceedings of the Symposium on Logic in Computer Science, Cambridge, Massachusetts, June 1986, pp. 332–344.Google Scholar
  21. 21.
    Wos, L., Overbeek, R., Lusk, E., and Boyle, J.: Automated Reasoning: Introduction and Applications, McGraw-Hill, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Teodor Knapik
    • 1
  1. 1.ERMITUniversité de la RéunionCedex 9France. e-mail

Personalised recommendations