Advertisement

Solar System Research

, Volume 36, Issue 3, pp 193–205 | Cite as

Turbulent Heat Fluxes in the Atmosphere of Venus

  • M. N. Izakov
Article

Abstract

A thermal regime of the troposphere of Venus is mainly determined by the greenhouse effect. A closeness of the real temperature gradient to the adiabatic one indicates that turbulent heat fluxes are also essential. Additional problems arise as only about 11% of the solar radiation absorbed by the planet reaches the surface, and most of it is taken up in the clouds at altitudes of 60–70 km. The present study summarizes experimental data on atmospheric parameters related to turbulence and estimates turbulent fluxes and turbulence characteristics. These data confirm the author's hypothesis of an anomalous downward turbulent heat flux in the free atmosphere. A normal upward turbulent heat flux exists in the planetary boundary layer.

Keywords

Radiation Atmosphere Experimental Data Boundary Layer Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Avduevsky, V.S., Marov, M.Ya., Kulikov, Yu.N., et al., Structure and Parameters of the Venus Atmosphere according to the Venera Probe Data, in Venus, Hunten, D.M., Colin, L., Donahue, T.M., and Moroz, V.I., Eds., Tucson: Univ. of Arizona Press, 1983, pp. 280-298.Google Scholar
  2. Barnes, J.R., Walsh, T.D., and Murphy, J.R., Transport Timescales in Martian Atmosphere: General Circulation Model Simulations, J. Geophys. Res., 1996, vol. 101, pp. 16 881-16 890.Google Scholar
  3. Blamont, J., Boloh, L., Kerzhanovich, V., et al., Balloons on Planet Venus: Final Results, Adv. Space Res., 1993, vol. 13, no. 2, pp. 145-152.Google Scholar
  4. Budyko, M.I., Klimat v proshlom i budushchem (Climate in the Past and in the Future), Leningrad: Gidrometeoizdat, 1980.Google Scholar
  5. Bullock, M.A. and Grinspoon, D.H., The Stability of Climate on Venus, J. Geophys. Res., 1996, vol. 101, pp. 7521-7529.Google Scholar
  6. Burangulov, N.I., Zilitinkevich, S.S., Kerzhanovich, V.V., et al., Dinamika atmosfery Venery (Dynamics of the Venus Atmosphere), Leningrad: Nauka, 1974.Google Scholar
  7. Chamberlain, J., Theory of Planetary Atmospheres. An Introduction to Their Physics and Chemistry, New York: Academic, 1978. Translated under the title Teoriya planetarnykh atmosfer, Moscow: Mir, 1981.Google Scholar
  8. Counselman, C.C., Gourevitch, S.A., King, R.W., et al., Zonal and Meridional Circulation of the Lower Atmosphere of Venus, J. Geophys. Res., 1980, vol. 85, pp. 8026-8030.Google Scholar
  9. Crisp, D., Ingersoll, A.P., Hildebrand, C.E., and Preston, R.A., VEGA Balloon Meteorological Measurements, Adv. Space Res., 1990, vol. 10, no. 5, pp. 109-124.Google Scholar
  10. Crisp, D. and Titov, D., The Thermal Balance of the Venus Atmosphere, in Venus II, Bougher, S.W., Hunten, D.M., and Phillips, P.J., Eds., Tucson: Univ. of Arizona Press, 1997, pp. 459-500.Google Scholar
  11. Dalaudier, F. and Sidi, C., Direct Evidence of “Sheets” in Atmospheric Temperature Field, J. Atmos. Sci., 1994, vol. 51, pp. 237-248.Google Scholar
  12. Ebel, A., Eddy Diffusion Models for the Mesosphere and Lower Thermosphere, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 617-628.Google Scholar
  13. Fairall, C.W., White, A.B., and Thomson, D.W., A Stochastic Model of Gravity-Wave-Induced Clear-Air Turbulence, J. Atmos. Sci., 1991, vol. 48, pp. 1771-1790.Google Scholar
  14. Fritts, D.C., Gravity Wave Saturation in the Middle Atmosphere: A Review of Theory and Observations, Rev. Geophys. Space Phys., 1984, vol. 22, pp. 275-308.Google Scholar
  15. Frost, U., Spectral Theory of Turbulence, in Handbook of Turbulence, vol. 1: Fundamentals and Applications, Frost, W. and Moulden, T., Eds., New York: Plenum, 1977. Translated under the title Turbulentnost'. Printsipy i primeneniya, Moscow: Mir, 1980, pp. 99-41.Google Scholar
  16. Fukao, S., Yamanaka, M.D., Ao, N., et al., Seasonal Variability of Vertical Eddy Diffusivity in the Middle Atmosphere, J. Geophys. Res., 1994, vol. 99, pp. 18973-18987.Google Scholar
  17. Gal'tsev, A.P. and Safrai, A.S., Rosseland Coefficients for Optically Dense CO2-H2O Atmospheres, Kosm. Issled., 1980, vol. 18, pp. 464-465.Google Scholar
  18. Gage, K.S. and Nastrom, G.D., Spectrum of Atmospheric Vertical Displacements and Spectrum of Conservative Scalar Additives Due to Quasi-Horizontal Atmospheric Motions, J. Geophys. Res., 1986, vol. 91, pp. 13211-13216.Google Scholar
  19. Gierasch, P.J., Goody, R.M., Young, R.E., et al., The General Circulation of the Venus Atmosphere: Assessment, in Venus II, Bougher, S.W., Hunten, D.M., and Phillips, P.J., Eds., Tucson: Univ. of Arizona Press, 1997, pp. 459-500.Google Scholar
  20. Gill, A., Atmosphere-Ocean Dynamics, 2 vols., New York: Academic, 1982. Translated under the title Dinamika atmosfery i okeana, 2 vols., Moscow: Mir, 1986.Google Scholar
  21. Goody, R.M. and Robinson, A.R., A Discussion of the Deep Circulation of the Atmosphere of Venus, Astrophys. J., 1966, vol. 146, pp. 339-355.Google Scholar
  22. Gossard, E. and Hooke, W., Waves in Atmosphere, Amsterdam: Elsevier, 1975. Translated under the title Volny v atmosfere, Moscow: Mir, 1978.Google Scholar
  23. Gurvich, A.S., Determination of Small-Scale Turbulence Characteristics in the Venus Atmosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1969, vol. 5, pp. 1172-1178.Google Scholar
  24. Haberle, R.M., Houben, H.C., Hertenstein, R., and Herdtle, T., A Boundary-Layer Model for Mars: Comparison with Viking Lander and Entry Data, J. Atmos. Sci., 1993, vol. 50, pp. 1544-1559.Google Scholar
  25. Hinson, D.P. and Jenkins, J.M., Magellan Radio Occultation Measurements of Atmospheric Waves on Venus, Icarus, 1995, vol. 114, pp. 310-327.Google Scholar
  26. Hocking, W.K., Turbulence in the Region 80–120 km, Adv. Space Res., 1987, vol. 7, no. 10, pp. 171-181.Google Scholar
  27. Ingersoll, A.P., Crisp, D., Grossman, A.W., et al., Estimates of Convective Heat Fluxes and Gravity Wave Amplitudes in the Venus Middle Cloud Layer from VEGA Balloon Measurements, Adv. Space Res., 1987, vol. 7(12), pp. 343-349.Google Scholar
  28. Izakov, M.N., Self-Organization and Information on Planets and in Ecosystems, Usp. Fiz. Nauk, 1997, vol. 167, pp. 1087-1094.Google Scholar
  29. Izakov, M.N., Turbulence and Anomalous Heat Fluxes in the Atmospheres of Mars and Venus, Planet. Space Sci., 2001a, vol. 49, pp. 47-58.Google Scholar
  30. Izakov, M.N., A Possible Mechanism of Superrotation of the Atmosphere of Venus, Astron. Vestn., 2001b, vol. 35, no. 4, pp. 275-286 [Sol. Syst. Res. (Engl. transl.), 2001b, vol. 35, no. 4, pp. 249-260].Google Scholar
  31. Kalnay de Rivas, E., Further Numerical Calculations of the Circulations of the Atmosphere of Venus, J. Atmos. Sci., 1975, vol. 32, pp. 1017-1024.Google Scholar
  32. Kennedy, P.J. and Shapiro, M.A., Farther Encounters with Clear Air Turbulence in Research Aircraft, J. Atmos. Sci., 1980, vol. 37, pp. 986-993.Google Scholar
  33. Kerzhanovich, V.V., Dynamics and the Vertical Structure of the Atmospheres of Mars and Venus from Direct Experiments on Soviet Spacecraft, Doctoral (Fiz.-Math.) Dissertation, Moscow: Space Res. Inst., RAS, 1982.Google Scholar
  34. Kerzhanovich, V.V. and Marov, M.Ya., The Atmosphere Dynamics of Venus according to Doppler Measurements by Venera Entry Probes, in Venus, Hunten, D.M., Colin, L., Donahue, T.M., and Moroz, V.I., Eds., Tucson: Univ. of Arizona Press, 1983, pp. 766-778.Google Scholar
  35. Kerzhanovich, V.V., Aleksandrov, Yu.N., Andreev, R.A., et al., VEGA Balloon Experiment. Small-Scale Turbulence in the Middle Cloud Layer of Venus, Pis'ma Astron. Zh., 1986, vol. 12, pp. 46-51.Google Scholar
  36. Kerzhanovich, V.V., Antsibor, N.M., Bakit'ko, R.V., et al., Vega-1 and Vega-2: Vertical Profiles of Wind Speeds from Doppler Measurements on Descent Probes, Kosm. Issled., 1987, vol. 25, pp. 673-677.Google Scholar
  37. Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh sistem (Statistical Theory of Open Systems), Moscow: Yanus, 1995.Google Scholar
  38. Ksanfomality, L.V., Planeta Venera (The Planet Venus), Moscow: Nauka, 1985.Google Scholar
  39. Kukharets, V.P. and Tsvang, L.R., Spectra of Turbulent Heat Flows in the Atmospheric Boundary Layer, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1969, vol. 5, pp. 1132-1142.Google Scholar
  40. Lamley, J.L., Theoretical Aspects of the Study of Turbulence in Stratified Flows, in Atmosfernaya turbulentnost' i rasprostranenie radiovoln (Atmospheric Turbulence and Wave Propagation), Moscow: Nauka, 1967, pp. 105-112.Google Scholar
  41. Linkin, V.M., Blamont, J., and Lipatov, A.N., Thermal Structure of the Middle Cloud Layer of the Venus Atmosphere, Pis'ma Astron. Zh., 1986, vol. 12, pp. 36-40.Google Scholar
  42. Linkin, V.M., Blamont, J., Devyatkin, S.I., et al., Thermal Structure of the Venus Atmosphere: Results of Measurements by the Vega-2 Lander, Kosm Issled., 1987, vol. 25, pp. 659-672.Google Scholar
  43. Lubken, F.-J., Hillert, W., Lehmacher, G., and von Zahn, U., Experiments Revealing Small Impact of Turbulence on the Energy Budget of the Mesosphere and Lower Thermosphere, J. Geophys. Res., 1993, vol. 98, pp. 20369-20384.Google Scholar
  44. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Fluid Mechanics), Moscow: Nauka, vol. 1, 1965; vol. 2, 1967. Translated under the title Statistical Fluid Mechanics, Cambridge, MA: MIT Press, vol. 1, 1971; vol. 2, 1975.Google Scholar
  45. Monin, A.S., Teoreticheskie osnovy geofizicheskoi gidrodinamiki (Theoretical Basics of Geophysical Hydrodynamics), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  46. Moroz, V.I., The Atmosphere of Venus, Space Sci. Rev., 1981, vol. 29, pp. 3-127.Google Scholar
  47. Moroz, V.I., Ekonomov, A.P., Golovin, Yu.M., et al., Solar Radiation Scattered in the Venus Atmosphere, Icarus, 1983, vol. 53, pp. 509-537.Google Scholar
  48. Moroz, V.I., Ekonomov, A.P., Moshkin, B.E., et al., Solar and Thermal Radiation in the Venus Atmosphere, Adv. Space Res., 1985, vol. 5, no. 11, pp. 197-232.Google Scholar
  49. Nier, A.O. and McElroy, M.B., Composition and Structure of Mars' Upper Atmosphere: Results from the Neutral Mass Spectrometers on Viking 1/2, J. Geophys. Res., 1977, vol. 82, pp. 4341-4349.Google Scholar
  50. Phillips, O.M., On the Bolgiano and Lamley-Shur Theories of the Buoyancy Subrange, in Atmosfernaya turbulentnost' i rasprostranenie radiovoln (Atmospheric Turbulence and Wave Propagation), Moscow: Nauka, 1967, pp. 121-129.Google Scholar
  51. Pollack, J.B., Toon, O.B., and Boese, R., Greenhouse Models of Venus' High Surface Temperature as Constrained by Pioneer Venus, J. Geophys. Res., 1980, vol. 85, pp. 8223-8231.Google Scholar
  52. Ramanathan, V. and Coakley, J.A., Climate Modeling through Radiative-Convective Models, Rev. Geophys. Space Phys., 1978, vol. 16, p. 465.Google Scholar
  53. Rodin, A.V. and Afanasenko, T., Infrared Flows in the Venus Atmosphere, personal communication, 2001.Google Scholar
  54. Sagan, C., The Surface Temperature on Venus, Astron. J., 1960, vol. 65, pp. 352-353.Google Scholar
  55. Seiff, A., Kirk, D.B., Young, R.E., et al., Measurements of Thermal Structure and Thermal Contrasts in the Atmosphere of Venus, J. Geophys. Res., 1980, vol. 85, pp. 7903-7933.Google Scholar
  56. Seiff, A., Thermal Structure of the Atmosphere of Venus, in Venus, Hunten, D.M., Colin, L., Donahue, T.M., and Moroz, V.I., Eds., Tucson: Univ. of Arizona Press, 1983, pp. 215-279.Google Scholar
  57. Seiff, A., Schofield, J.T., Kliore, A.J., et al., Models of the Structure of the Atmosphere of Venus from the Surface to 100-km Altitude, Adv. Space Res., 1985, vol. 5, no. 11, pp. 3-58.Google Scholar
  58. Shari, V.P., Heat Radiation Flows in the Lower Atmosphere of Venus, Kosm. Issled., 1976, vol. 14, pp. 97-110.Google Scholar
  59. Shur, G.N., Experimental Studies of the Energy Spectrum of Atmospheric Turbulence, Tr. Tsentral'noi Aerologicheskoi Observatorii, 1962, no. 43, pp. 79-90.Google Scholar
  60. Sidi, C. and Dalaudier, F., Turbulence in the Stratified Atmosphere, Adv. Space Res., 1990, vol. 10, no. 10, pp. 25-36.Google Scholar
  61. Smith, S.A., Fritts, D.C., and Van Zandt, T.E., Evidence for a Saturated Spectrum of Atmospheric Gravity Waves, J. Atmos. Sci., 1987, vol. 44, pp. 1404-1410.Google Scholar
  62. Staley, D.O., The Adiabatic Lapse Rate in the Venus Atmosphere, J. Atmos. Sci., 1970, vol. 27, pp. 219-223.Google Scholar
  63. Tomasko, M.G., Smith, P.H., Suomi, V.E., et al., The Thermal Balance of Venus in the Light of the Pioneer Venus Mission, J. Geophys. Res., 1980, vol. 85, pp. 8187-8199.Google Scholar
  64. Tomasko, M.G., Doos, L.R., and Smith, P.H., The Absorption of Solar Energy and the Heating Rate in the Atmosphere of Venus, Adv. Space Res., 1985, vol. 5, no. 9, pp. 71-79.Google Scholar
  65. Vinnichenko, N.K., Pinus, N.Z., Shmetter, S.M., and Shur, G.N., Turbulentnost' v svobodnoi atmosfere (Turbulence in Free Atmosphere), Moscow: Gidrometeoizdat, 1976.Google Scholar
  66. Von Zahn, U., Fricke, K.H., Hunten, D.M., et al., The Upper Atmosphere of Venus during the Morning Conditions, J. Geophys. Res., 1980, vol. 85, pp. 7829-7840.Google Scholar
  67. Weinstock, J., On the Theory of Turbulence in the Buoyancy Subrange of Stably Stratified Turbulence, J. Atmos. Sci., 1978, vol. 35, pp. 634-649.Google Scholar
  68. Weinstock, J., Gravity Wave Saturation and Eddy Diffusion in the Middle Atmosphere, J. Atmos. Terr. Phys., 1984, vol. 46, pp. 1069-1082.Google Scholar
  69. Woo, R. and Ishimaru, A., Eddy Diffusion Coefficient for the Atmosphere of Venus from Radio Scintillation Measurements, Nature, 1981, vol. 289, pp. 383-384.Google Scholar
  70. Young, R., Walterscheid, R., Schubert, G., et al., Characteristics of Gravity Waves Generated by Surface Topography of Venus: Comparison with the VEGA Balloon Results, J. Atmos. Sci., 1987, vol. 44, pp. 2628-2639.Google Scholar
  71. Zimmerman, S.P. and Keneshea, T.J., Turbulent Heating and Transfer in the Stratosphere and Mesosphere, J. Atmos. Terr. Phys., 1986, vol. 48, pp. 491-507.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • M. N. Izakov
    • 1
  1. 1.Institute for Space ResearchRussian Academy of SciencesMoscowRussia

Personalised recommendations