Journal of Oceanography

, Volume 58, Issue 1, pp 121–136 | Cite as

Progress in Scatterometer Application



Progress in the scientific application of space-based scatterometer data over the past two decades is reviewed. There has been continuous improvement in coverage, resolution, and accuracy. Besides the traditional applications in weather and ocean-atmosphere interaction, which are based on ocean surface wind vectors, emerging applications over land and ice are also described. Future missions and new technology are introduced.

Remote-sensing air-sea interaction weather wind 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers, W. and H. Huhnerfuss (1989): The damping of ocean waves by surface films: a new look at an old problem. J. Geophys. Res., 94, 6251–6265.Google Scholar
  2. Anderson, D., A. Hollingsworth, S. Uppala and P. Woiceshyn (1991): A study of the use of scatterometer data in the European Centre for Medium-range operational analysis-fore-cast model. 2. Data impact. J. Geophys. Res., 96, 2635–2647.Google Scholar
  3. Andrew, P. L. and R. S. Bell (1998): Optimizing the United Kingdom Meteorological Office data assimilation for ERS-1 scatterometer winds. Mon. Wea. Rev., 126, 736–746.Google Scholar
  4. Atlas, R., A. J. Busalacchi, E. Kalanay and S. Bloom (1987): Global surface wind and flux fields from model assimilation of SEASAT data. J. Geophys. Res., 92, 6477–6487.Google Scholar
  5. Atlas, R., S. C. Bloom, R. N. Hoffman, E. Brin, J. Ardizzone, J. Terry, D. Bungato and J. C. Jusem (1999): Geophysical validation of NSCAT winds using atmospheric data and analyses. J. Geophys. Res., 104, 11,405–11,424.Google Scholar
  6. Atlas, R., R. N. Hoffman, S. M. Leidner, J. Sienkiewicz, T.-W. Yu, S. C. Bloom, E. Brin, J. Ardizzone, J. Terry, D. Bungato and J. C. Jusem (2001): The effects of marine winds from scatteromemeter data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 1965–1990.Google Scholar
  7. Austin, S. and W. J. Pierson (1999): Mesoscale and synoptic-scale effect on the validation of NSCAT winds by means of data buoy reports. J. Geophys. Res., 104, 11,437–11,447.Google Scholar
  8. Baker, W. E., R. Atlas, E. Kalnay, M. Halem, P. M. Woiceshyn, S. Peteherych and D. Edelmann (1984): Large-scale analysis and forecast experiments with wind data from the Seasat-A scatterometer. J. Geophys. Res., 89, 4927–4936.Google Scholar
  9. Barger, W. R., W. D. Garrett, E. Mollo-Christensen and K. W. Ruggles (1970): Effects of an artificial slick upon the atmosphere and the ocean. J. Appl. Meter., 9, 396–400.Google Scholar
  10. Barnier, B., J. Capella and J. O'Brien (1994): The use of satellite scatterometer winds to drive a primitive equation model of the Indian Ocean: the impact of bandlike sampling. J. Geophys. Res., 99, 14,187–14,196.Google Scholar
  11. Bentamy, A., N. Grima and Y. Quilfen (1998): Validation of the gridded weekly and monthly wind fields calculated from ERS-1 scatterometer wind observations. Global Atmos. Ocean System, 6, 373–396.Google Scholar
  12. Bourassa, M. A., L. M. H. Freilich, D. M. Legler, W. T. Liu and J. J. O'Brien (1997): Wind observations from new satellite and research vessels agree. Eos Trans., AGU, 78, 597, 602.Google Scholar
  13. Bourassa, M. A., L. Zamudio and J. J. O'Brien (1999): Noninertial flow in NSCAT observations of Tehuantepec winds. J. Geophys. Res., 104, 11,311–11,319.Google Scholar
  14. Boutin, J., J. Etcheto, M. Rafizadeh and D. C. E. Bakker (1999): Comparison of NSCAT, ERS 2 active microwave instrument, special sensor microwave imager, and carbon interface ocean atmosphere buoy wind speed: consequences for the air-sea CO2 exchange coefficient. J. Geophys. Res., 104, 11,375–11,392.Google Scholar
  15. Brown, R. A. (1982): Surface wind analyses for SEASAT. J. Geophys. Res., 87, 3355–3364.Google Scholar
  16. Brown, R. A. (2000): On satellite scatterometer model functions. J. Geophys. Res., 105, 29,195–29,205.Google Scholar
  17. Brown, R. A. and L. Zeng (1994): Estimating central pressures of the oceanic midlatitude cyclones. J. Appl. Meter., 33, 1088–1095.Google Scholar
  18. Brown, R. G. and L.-L. Fu (2000): An examination of the spring 1997 mid-latitude east Pacific sea surface temperature anomaly. Atmos.-Ocean, 38, 577–599.Google Scholar
  19. Cane, M. A., V. J. Cardone, M. Halem and I. Halberstam (1981): On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data: A simulation study. J. Geophys. Res., 86, 8093–8106.Google Scholar
  20. Chang, C. P., S. C. Lin, C. S. Liou and W. T. Liu (1999): An experiment using NSCAT winds in the numerical prediction of tropical mesoscale rainfall systems under the influence of terrain. Geophys. Res. Lett., 26, 311–314.Google Scholar
  21. Chelton, D. B., M. H. Freilich and S. K. Esbensen (2000): Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 1993–2018.Google Scholar
  22. Chelton, D. B., S. K. Esbensen, M. G. Schlax, N. Thum, M. H. Freilich, F. J. Wentz, C. L. Gentemann, M. J. McPhaden and P. S. Schoff (2001): Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498.Google Scholar
  23. Chen, D., W. T. Liu, S. E. Zebiak, M. A. Cane, Y. Kushnir and D. Witter (1999a): The sensitivity of the tropical Pacific ocean simulation to the spatial and temporal resolution of wind forcing. J. Geophys. Res., 104, 11,261–11,271.Google Scholar
  24. Chen, D., M. A. Cane and S. E. Zebiak (1999b): The impact of NSCAT winds on predicting the 1997/1998 El Niño: a case study with the Lamont-Dohderty Earth Obsevvatory model. J. Geophys. Res., 104, 11,321–11,327.Google Scholar
  25. Chu, P. C., S. Lu and W. T. Liu (1999): Uncertainty of the South China Sea prediction using NSCAT and NCEP winds during tropical storm Ernie 1996. J. Geophys. Res., 104, 11,273–11,289.Google Scholar
  26. Clemente-Colon, P. and X.-H. Yan (1999): Observations of east coast upwelling conditions in synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens., 37, 2239–2248.Google Scholar
  27. Cornillon, P. and K.-A. Park (2001): Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575–578.Google Scholar
  28. Donelan, M. A. and W. J. Pierson (1987): Radar scattering and equlibrium ranges in wind-generated waves with application to scatteromeetry. J. Geophys. Res., 92, 4971–5029.Google Scholar
  29. Donnelly, W. J., J. R. Carswell, R. E. McIntosh, P. S. Chang, J. Wilkerson, F. Marks and P. G. Black (1999): Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res., 104, 11,485–11,497.Google Scholar
  30. Drinkwater, M. R. and X. Liu (2000): Seasonal to interannual variability in Antarctic sea-ice surface melt. IEEE Trans. Geosci. Remote Sens., 38, 1827–1842.Google Scholar
  31. Duffy, D. G. and R. Atlas (1986): The impact of Seasat-A scatterometer data on the numerical predition of the Queen Elizabeth II storm. J. Geophys. Res., 91, 2241–2248.Google Scholar
  32. Duffy, D. G., R. Atlas, T. Rosmond, E. Barker and R. Rosenberg (1984): The impact of Seaasat scatterometer winds on the navy's operational model. J. Geophys. Res., 89, 7238–7244.Google Scholar
  33. Ebuchi, N. (1997): Sea surface temperature dependence of C-band radar cross sections observed by ERS-1/AMI scatterometer. J. Adv. Mar. Sci. Tech. Soc., 3, 157–168.Google Scholar
  34. Ebuchi, N. (1999): Statistical distribution of wind speeds and directions globally observed by NSCAT. J. Geophys. Res., 104, 11,393–11,403.Google Scholar
  35. Ebuchi, N. and H. C. Graber (1998): Directivity of wind vectors derived from the ERS-1/AMI scatterometer. J. Geophys. Res., 103, 7787–7798.Google Scholar
  36. Ezraty, R. and A. Cavanie (1999): Construction and evaluation 12.5–km grid NSCAT backscatter maps over arctic sea ice. IEEE Trans. Geosci. Remote Sens., 37, 1685–1697.Google Scholar
  37. Figa, J. and A. Stoffelen (2000): On the assimilation of Ku-band scatterometer winds for weather analysis and forecasting. IEEE Trans. Geosci. Remote Sens., 38, 1893–1902.Google Scholar
  38. Freilich, M. H. (1986): Satellite scatterometer comparisons with surface measurements techniques and Seasat results. Proc. Workshop ERS-1 Wind and Wave Calibration, ESA SP-262, 57–62.Google Scholar
  39. Freilich, M. H. and S. Dunbar (1993): A preliminary C-band scatterometer model function for the ERS 1 AMI instrument. Proc. 1st ERS-1 Symposium, ESA SP-359, 79–84.Google Scholar
  40. Freilich, M. H. and S. Dunbar (1999): The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res., 104, 11,231–11,246.Google Scholar
  41. Frolking, S., K. C. McDonald, J. S. Kimball, J. B. Way, R. Ximmermann and S. W. Running (1999): Using the spaceborne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons. J. Geophys. Res., 104, 27,895–27,907.Google Scholar
  42. Fu, L.-L. and Y. Chao (1997): The sensitivity of a global ocean model to wind forcing: a test using sea level and wind observations from satellites and operational wind analysis. Geophys. Res. Lett., 24, 1783–1786.Google Scholar
  43. Gade, M., W. Alpers, H. Huhnerfuss, V. R. Wismann and P. A. Lange (1998): On the reduction of the radar backscatter by oceanic surface films: scatterometer measurements and their theoretical interpretation. Remote Sens. Environ., 66, 52–70.Google Scholar
  44. Gille, S. T., D. P. Stevens, R. T. Tokmakian and K. J. Heywood (2001): Antarctic Circumpolar Current Response to Zonally-Averaged Winds. J. Geophys. Res., 106, 2743–2759.Google Scholar
  45. Gonzales, A. E. and D. G. Long (1999): An assessment of NSCAT ambiguituy removal. J. Geophys. Res., 104, 11,449–11,457.Google Scholar
  46. Grima, N., A. Bentamy, K. Katsaros and Y. Quilfen (1999): Sensitivity of an oceanic general circulation model forced by satellite wind stress fields. J. Geophys. Res., 104, 7967–7989.Google Scholar
  47. Grodsky, S. A. and J. A. Carton (2001): Coupled land/atmosphere interactions in the West African Monsoon. Geophys. Res. Lett., 28, 1503–1506.Google Scholar
  48. Hackert, E. C., A. J. Busalacchi and R. Murtugudde (2001): A wind comparison study using an ocean general circulatin model for the 1997–1998 El Niño. J. Geophys. Res., 106, 2345–2362.Google Scholar
  49. Halpern, D. and P. M. Woiceshyn (1999): Onset of the Somali jet in the Arabian Sea during June 1997. J. Geophys. Res., 104, 18,041–18,046.Google Scholar
  50. Hashizume, H., S.-P. Xie, W. T. Liu and K. Takeuchi (2001): Local and remote atmospheric response to tropical instability waves: a global view from space. J. Geophys. Res., 106, 10173–10185.Google Scholar
  51. Hawkins, J. D. and P. G. Black (1983): SEASAT scatterometer detection of gale force winds near tropical cyclones. J. Geophys. Res., 88, 1674–1682.Google Scholar
  52. Hoffman, R. N. (1982): SASS wind ambiguity removal by direct minimization. Mon. Wea. Rev., 110, 434–445.Google Scholar
  53. Hsu, C. S. and W. T. Liu (1996): Wind and pressure fields near tropical cyclone Oliver derived from scatterometer observations. J. Geophys. Res., 101, 17,021–17,027.Google Scholar
  54. Hsu, C. S. and M. G. Wurtele (1997): Construction of marine surface pressure fields from scatterometer winds. J. Geophys. Res., 36, 1249–1261.Google Scholar
  55. Hsu, C. S., W. T. Liu and M. G. Wurtele (1997): Impact of scatteromometer winds on hydrologic forcing and convective heating through surface divergence. Mon. Wea. Rev., 125, 1556–1576.Google Scholar
  56. Huhnerfuss, H., W. Alpers and W. L. Jones (1978): Measurements at 13.9 GHz of the radar backscattering cross section of the North Sea covered with an artificial surface film. Radio Sci., 13, 979–983.Google Scholar
  57. Ingleby, N. B. and R. A. Bromley (1991): A diagnostic study of the impact of SEASAT scatterometer winds on numerical weather prediction. Mon. Wea. Rev., 119, 84–103.Google Scholar
  58. Isaksen, L. and A. Stoffelen (2000): ERS scatterometer wind data impact on ECMWF's tropical cyclone forecasts. IEEE Trans. Geosci. Remote Sens., 38, 1885–1892.Google Scholar
  59. Jones, W. L., F. J. Wentz and L. C. Schroeder (1978): Algorithm for inferring wind stress from SEASAT-A. J. Spacecraft and Rockets, 15, 368–374.Google Scholar
  60. Jones, W. L., L. C. Schroeder, D. H. Boggs, E. M. Bracalente, R. A. Brown, G. J. Dame, W. J. Pierson and F. J. Wentz (1982): The SEASAT-A satellite scatterometer: the geophyiscal evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res., 87, 3297–3317.Google Scholar
  61. Jones, W. L., V. Cardone, W. J. Pierson, J. Zec, L. P. Rice, A. Cox and W. B. Sylvester (1999): NSCAT high-resolution surface wind measurements in Typhoon Violet. J. Geophys. Res., 104, 11,247–11,259.Google Scholar
  62. Katsaros, K. B., E. B. Forde, P. Chang and W. T. Liu (2001): QuikSCAT facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28, 1043–1046.Google Scholar
  63. Kawamura, H. and P. Wu (1998): Formation mechanism of Japan Sea Proper Water in the flux center off Vladivostok. J. Geophys. Res., 103, 21,611–21,622.Google Scholar
  64. Kelly, K. A., S. Dickinson and Z. Yu (1999): NSCAT tropical wind stress maps: implications for improving ocean modeling. J. Geophys. Res., 104, 11,291–11,310.Google Scholar
  65. Kelly, K. A., S. Dickensen, M. J. McPhaden and G. C. Johnson (2001): Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 2469–2472.Google Scholar
  66. Kwok, R., G. F. Cunningham and S. Yueh (1999): Area balance of the Arctic Ocean perennial ice zone: October 1996 to April 1997. J. Geophys. Res., 104, 25,747–25,759.Google Scholar
  67. Le Marshall, J., L. Leslie, R. Morison, N. Pescod, R. Seecamp and C. Spinoso (2000): Recent developments in the continuous assimilation of satellite wind data for tropical cyclone track forcasting. Adv. Space Res., 25, 1077–1080.Google Scholar
  68. Levy, G. and R. A. Brown (1991): Southern Hemisphere synoptic weather from satelllite scatterometer. Mon. Wea. Rev., 119, 2803–2813.Google Scholar
  69. Lin, I.-I., L.-S. Wen, K.-K. Liu, W.-T. Tsai and A. K. Liu (2001): Evidence and quantification of the correlation between radar backscatter and ocean colour supported by simultaneously acquired in situ sea truth. Geophys. Res. Lett. (in press).Google Scholar
  70. Liss, P. S. and L. Merlivat (1986): Air-sea gas exchange rates: Introduction and syntheis. p. 113–127. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. by P. Buat-Menard, D. Reidel Publ. Co., Dordrecht.Google Scholar
  71. Liu, A. K., Y. Zhao and W. T. Liu (1998): Sea ice motion derived from satellite agrees with buoy observations. Eos Trans., AGU, 79, 353, 359.Google Scholar
  72. Liu, A. K., Y. Xhao and S. Y. Wu (1999): Arctic sea ice drift from wavelet analysis of NSCAT and special sensor microwave imager data. J. Geophys. Res., 104, 11,529–11,538.Google Scholar
  73. Liu, K. S. and J. C. L. Chan (1999): Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992–3001.Google Scholar
  74. Liu, W. T. (1984): The effects of the variations in sea surface temperature and atmospheric stability in the estimations of average wind speed by Seasat-SASS. J. Phys. Oceanogr., 14, 392–401.Google Scholar
  75. Liu, W. T. (1993): Ocean surface evaporation. p. 265–278. In Atlas of Satellite Observations Related to Global Change, ed. by R. J. Gurney, J. Foster and C. Parkinson, Cambridge University Press, Cambridge.Google Scholar
  76. Liu, W. T. (2001): Wind over troubled water. Backscatter, 12,No. 2, 10–14.Google Scholar
  77. Liu, W. T. and W. G. Large (1981): Determination of surface stress by Seasat-SASS: A case study with JASIN Data. J. Phys. Oceanogr., 11, 1603–1611.Google Scholar
  78. Liu, W. T. and W. Tang (1996): Equivalent Neutral Wind. JPL Pub. 96–17, Jet Propulsion Laboratory, Pasadena, 16 pp.Google Scholar
  79. Liu, W. T. and X. Xie (1999): Spacebased observations of the oceanic responses to seasonal changes of south Asian monsoons. Geophys. Res. Lett., 126, 1473–1476.Google Scholar
  80. Liu, W. T., K. B. Katsaros and J. A. Businger (1979): Bulk parameterization of air-sea exchanges in heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722–1735.Google Scholar
  81. Liu, W. T., W. Tang and L. L. Fu (1995): Recent warming event in the Pacific may be an El Niño. Eos Trans., AGU, 76,No. 43, 429–437.Google Scholar
  82. Liu, W. T., W. Tang and R. S. Dunbar (1997): Scatterometer observes extratropical transition of Pacific typhoons. Eos Trans., AGU, 78, 237, 240.Google Scholar
  83. Liu, W. T., W. Tang and H. Hu (1998a): Spaceborne sensors observe various effects of anomalous winds on sea surface temperatures in the Pacific Ocean. Eos Trans., AGU, 79, 249, 252.Google Scholar
  84. Liu, W. T., W. Tang and P. S. Polito (1998b): NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25, 761–764.Google Scholar
  85. Liu, W. T., H. Hu and S. Yueh (2000a): Interplay between wind and rain observed in Hurricane Floyd. Eos. Trans., AGU, 81, 253, 257.Google Scholar
  86. Liu, W. T., X. Xie, P. S. Polito, S. Xie and H. Hashizume (2000b): Atmosphere manifestation of tropical instability waves observed by QuikSCAT and Tropical Rain Measuring Missions. Geophys. Res. Lett., 27, 2545–2548.Google Scholar
  87. Liu, W. T., H. Hu, Y. T. Song and W. Tang (2001a): Improvement of scatterometer wind vectors—impact on hurricane and coastal studies. Proc. WCRP/SCOR Workshop of Airsea Flux Validation, World Climate Research Programme, Geneva (in press).Google Scholar
  88. Liu, W. T., X. Xie, W. Tang and S. V. Nghiem (2001b): Wind changes over the Western Pacific. East Asia and Western Pacific Meteorology and Climate. Vol. 4, World Scientific Co., London (in press).Google Scholar
  89. Lleonart, G. T. and D. R. Blackman (1980): The spectral characteristics of wind-generated capillary waves. J. Fluid Mech., 97, 445–479.Google Scholar
  90. Long, D. G. and M. R. Drinkwater (1994): Greenland ice-sheet properties observed by the Seasat-A scatterometer at enhanced resolution. J. Glaciology, 40, 213–230.Google Scholar
  91. Long, D. G. and M. R. Drinkwater (1999): Cryosphere application of NSCAT data. IEEE Trans. Geosci. Remote Sens., 37, 1671–1684.Google Scholar
  92. Long, D. G. and P. J. Hardin (1994): Vegetation studies of the Amazon Basin using enhanced resolution Seasat scatterometer data. IEEE Trans. Geosci. Remote Sen., 32, 213–230.Google Scholar
  93. Long, D. G., P. J. Hardin and P. T. Whiting (1993): Resolution enhancement of spaceborne scatterometer data. IEEE Trans. Geosci. Remote Sens., 31, 700–715.Google Scholar
  94. Milliff, R. F., T. J. Hoar and H. van Loon (1999a): Quasi-stationary wave variability in NSCAT winds. J. Geophys. Res., 104, 11,425–11,435.Google Scholar
  95. Milliff, R. F., W. G. Large, J. Morzel, G. Danabasoglu and T. M. Chin (1999b): Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res., 104, 11,337–11,358.Google Scholar
  96. Milliff, R. F., M. H. Freilich, W. T. Liu, R. Atlas and W. G. Large (2001): Global ocean surface vector wind observations from space. Proc. Internation Conf. Ocean Observations for Climate Changes, CSIRO Press (in press).Google Scholar
  97. Moore, R. K. and A. K. Fung (1979): Radar determination of winds at sea. Proc. IEEE, 67, 1504–1521.Google Scholar
  98. Nghiem, S. V. and W.-Y. Tsai (2001): Global snow cover monitoring with spaceborne Ku-band scatterometer. IEEE Trans. Geosci. Remote Sens., 39, 2118–2134.Google Scholar
  99. Nghiem, S. V., K. Steffen, R. Kwok and W.-Y. Tsai (2001): Detection of snow melt regions on the Greenland ice sheet using diurnal backscatter change. J. Glaciology (in press).Google Scholar
  100. Pacanowski, R. C. (1987): Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833–838.Google Scholar
  101. Plant, W. J. (1986): A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res., 91, 10,735–10,749.Google Scholar
  102. Plant, W. J. (2000): Effects of wind variability on scatterometry at low wind speeds. J. Geophys. Res., 105, 16,899–16,910.Google Scholar
  103. Polito, P. S., J. P. Ryan, W. T. Liu and F. P. Chavez (2001): Oceanic and atmospheric anomalies of tropical instability waves. Geophys. Res. Lett., 28, 2233–2236.Google Scholar
  104. Quilfen, Y., B. Chapron, T. Elfouhaily, K. Katsaros and J. Tournadre (1998): Observation of tropical cyclones by High-resolution scatterometry. J. Geophys. Res., 103, 7767–7786.Google Scholar
  105. Remund, Q. P. and D. G. Long (1999): Sea ice extent mapping using Ku band scatterometer data. J. Geophys. Res., 104, 11,515–11,527.Google Scholar
  106. Ritchie, E., J. Simpson, W. T. Liu, C. Veldon, K. Brueske and J. Halvorsen (2002): A closer look at hurricane formation and intensification using new technology. In Coping with Hurricanes. Chapter 12, ed. by R. Simpson, M. Garstang and R. Anthes, Amer. Geophys. Union (in press).Google Scholar
  107. Running, S. W., J. B. Way, K. C. McDonald, J. S. Kimball, S. Frlking, A. R. Keyser and R. Zimmerman (1999): Radar remote sensing proposed for monitoring freeze-thaw transitions in boreal regions. Eos Trans., AGU, 80, 213.Google Scholar
  108. Schmullius, C. C. (1997): Monitoring Siberian forest and agriculture with the ERS-1 wind scatterometer. IEEE Trans. Geosci. Remote Sens., 35, 1364–1366.Google Scholar
  109. Schroeder, L. C., D. H. Boggs, G. Dome, I. M. Halberstam, W. L. Jones, W. J. Pierson and F. J. Wentz (1982): The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite sctererometer winds. J. Geophys. Res., 87, 3318–3336.Google Scholar
  110. Shaffer, S. J., R. S. Dunbar, S. V. Hsiao and D. G. Long (1991): A median-filer-based ambiguity removal algorithm for NSCAT. IEEE Trans. Geosci. Remote Sens., 29, 167–174.Google Scholar
  111. Spencer, M. W., C. Wu and D. G. Long (2000): Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer. IEEE Trans. Geosci. Remote Sens., 38, 89–104.Google Scholar
  112. Stoffelen, A. and D. Anderson (1997): Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102, 5767–5780.Google Scholar
  113. Stoffelen, A. and G. J. Cats (1991): The impact of Seasat-A scatterometer data on high-resolution analysis and forecasts: The development of the QEII storm. Mon. Wea. Rev., 119, 2794–2802.Google Scholar
  114. Thepaut, J.-N., R. N. Hoffman and P. Coutier (1993): Interactions of dynamics and observations in a four-dimensional variational assimilation. Mon. Wea. Rev., 121, 3393–3414.Google Scholar
  115. Thiria, S., C. Mejia, F. Badran and M. Crepon (1993): A neural network approach for modeling nonlinear transfer functions: Application for wind retrieval from spaceborne scatterometer data. J. Geophys. Res., 98, 22,827–22,841.Google Scholar
  116. Tomassini, M., D. LeMeur and R. W. Saunders (1998): Near-surface satellite wind observations of Hurricanes and their impact on ECMWF model analyses and forecasts. Mon. Wea. Rev., 126, 1274–1286.Google Scholar
  117. Tsai, W.-Y., S. Nghiem, J. Huddelstgon, M. Spencer, B. Stiles and R. West (2000): Polarimetric scatteromometer: a promising technique for improving ocean surface measurements from space. IEEE Trans. Geosci. Remote Sens., 38, 1903–1921.Google Scholar
  118. Veldon, C., K. Bruske, C. Kummerow, W. T. Liu, J. Simpson, S. Braun and R. Anthes (2002): The burgeoning role of weather satellites. In Coping with Hurricanes. Chapter 11, ed. by R. Simpson, M. Garstang and R. Anthes, Amer. Geophys. Union (in press).Google Scholar
  119. Verschell, M. A., M. A. Bourassa, D. E. Weissman and J. J. O'Brien (1999): Ocean model validation of the NASA scatterometer winds. J. Geophys. Res., 104, 11,359–11,373.Google Scholar
  120. Wagner, W. (2000): Large-scale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Trans. Geosci. Remote Sens., 38, 1777–1782.Google Scholar
  121. Wagner, W., G. Lemoine, M. Borgeaud and H. Rott (1999): A study of vegetation cover on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 37, 938–948.Google Scholar
  122. Wanninkhof, R. H. and L. F. Bliven (1991): Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank. J. Geophys. Res., 96, 2785–2786.Google Scholar
  123. Weissman, D. E. and H. C. Graber (1999): Satellite scatterometer studies of ocean surface stress and drag coefficients using a direct model. J. Geophys. Res., 104, 11,329–11,335.Google Scholar
  124. Wentz, F. J. and D. K. Smith (1999): A model function for the ocean-normalized radar cross-section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11,449–11,514.Google Scholar
  125. Wentz, F. J., D. Smith and C. Mears (2001): Advanced algorithm for QuikSCAT and SeaWinds/AMSR. Proc. of IGARSS 2001, IEEE (in press).Google Scholar
  126. Wismann, V. (2000): Monitoring of seasonal thawing in Siberia with ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 38, 1804–1809.Google Scholar
  127. Woodhouse, I. H. and D. H. Hoekman (2000): A model-based determination of soil moisture trends in Spain with the ERS-scatterometer. IEEE Trans. Geosci. Remote Sens., 38, 1783–1793.Google Scholar
  128. Wright, J. W. (1968): A new model for sea clutter. IEEE Trans. Antennas and Prop., AP-16, 217.Google Scholar
  129. Wu, J. (1991): Effects of atmospheric stability on ocean ripples: a comparison between optical and microwave measurements. J. Geophys. Res., 96, 7265–7269.Google Scholar
  130. Wurtele, M. G., P. M. Woiceshyn, S. Peterherych, M. Borowski and W. S. Appleby (1982): Wind direction alias removal studies of SEASAT scatterometer-derived wind fields. J. Geophys. Res., 87, 3365–3377.Google Scholar
  131. Xie, S. P., M. Ishiwagtari, H. Hashizumi and K. Takeuchi (1998): Coupled ocean-atmosphere waves on the equatorial front. Geophys. Res. Lett., 25, 3863–2966.Google Scholar
  132. Xie, S. P., W. T. Liu, Q. Liu and M. Nonaka (2001): Far-reaching effects of the Hawaiian Island on the Pacific Ocean-Atmosphere. Science, 292, 2057–2060.Google Scholar
  133. Yeh, H.-C., T.-J. G. Chen and W. T. Liu (2001): Kinematic characteristics of a Meiyu Front detected by the QuikSCAT oceanic winds. Mon. Wea. Rev. (in press).Google Scholar
  134. Yu, J. Y., W. T. Liu and C. R. Mechoso (2000): The SST anomaly Dipole In the northern subtropical Pacific and its relationship with ENSO. Geophys. Res. Lett., 27, 1931–1934.Google Scholar
  135. Yu, T. W. and R. D. McPherson (1984): Global data assimilation experiment with scatterometer winds from SEASAT-A. Mon. Wea. Rev., 112, 368–376.Google Scholar
  136. Yu, Z. and D. W. Moore (2000): Validating the NSCAT winds in the vicinity of the Pacific Intertropical Convergence Zone. Geophys. Res. Lett., 27, 2121–2124.Google Scholar
  137. Yuan, X., D. G. Martinson and W. T. Liu (1999): The effect of air-sea-ice interaction on winter 1996 southern ocean subpolar storm distribution. J. Geophys. Res., 104, 1991–2007.Google Scholar
  138. Yueh, S. H. and R. Kwok (1998): Arctic sea ice extent and melt onset from NSCAT observations. Geophys. Res. Lett., 25, 4369–4372.Google Scholar
  139. Yueh, S. H., R. Kwok, S. Lou and W. Tsai (1997): Sea ice identification using dual-polarized Ku-band scatterometer data. IEEE Trans. Geosci. Remote Sens., 35, 560–569.Google Scholar
  140. Yueh, S. H., R. West, F. K. Li, W. Y. Tsai and R. Lay (2000): Dual-polarized Ku-band backscatter signatures of hurricane ocean winds. IEEE Trans. Geosci. Remote Sens., 38, 73–88.Google Scholar
  141. Yueh, S. H., B. Stiles, W.-Y. Tsai, H. Hu and W. T. Liu (2001): QuikSCAT geophysical model function for tropical cyclones and application to Hurricane Floyd. IEEE Trans. Geosci. Remote Sens. (in press).Google Scholar
  142. Zheng, Q., X.-H. Yan, N. E. Huang, V. Klemas and J. Pan (1997a): The effects of water temperature on radar scattering from the ocean surface. Global Atmosphere and Ocean System, 5, 273–294.Google Scholar
  143. Zheng, Q., X. H. Yan, W. T. Liu, W. Tang and D. Kurz (1997b): Seasonal and interannual variability of atmospheric convergence zones in the tropical Pacific observed with ERS-1 scatterometer. Geophys. Res. Lett., 24, 261–263.Google Scholar
  144. Zierden, D. F., M. A. Bourassa and J. J. O'Brien (2000): Cyclone surface pressure fields and frontogenesis from NASA Scatterometer (NSCAT) winds. J. Geophys. Res., 105, 23,967–23,981.Google Scholar

Copyright information

© The Oceanographic Society of Japan 2002

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations