, Volume 9, Issue 1, pp 65–74 | Cite as

Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides

  • Chisuzu Tokoh
  • Kejjil Junji Takabe
  • Minoru Fujita


Acetobacter xylinum was cultured in Schramm–Hestrin (SH) medium containing glucuronoxylan (xylan medium) or pectin (pectin medium). Loose bundles of cellulose microfibrils were formed in the xylan medium. In contrast the cellulose ribbons formed in the pectin medium were the same as those normally formed in SH medium.The periodic acidthiocarbohydrazidesilver proteinate method indicated that positive reacted substances located along cellulose microfibrils formed in both mediums. Freeze-fracture and deepetching electron microscopy also revealed that polysaccharides exist around cellulose microfibrils. X-ray diffractometry and Fourier Transform In-frared spectroscopy demonstrated that the addition of xylan induced a change in the ratio of cellulose Iα and Iβ. Electron diffraction analysis revealed that xylan discontinuously affected the crystalline structure of cellulose microfibrils. Pectin did not have this effect. Glucuronoxylan in the medium prevented the assembly of cellulose

Cellulose Electron microscopy FT-IR spectroscopy Pectin X-ray diffractometry Xylan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atalla R.H., Hackney J.M., Uhlin I. and Thompson N.S. 1993. Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 15: 109–112.Google Scholar
  2. Awano T., Takabe K. and Fujita M. 1998. Localization of glucuronoxylans in Japanese beech visualized by immunogold labeling. Protoplasma 202: 213–222.Google Scholar
  3. Benziman M., Haigler C., Brown Jr. R.M., White A.R. and Cooper K.M. 1980. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 77: 6678–6682.Google Scholar
  4. Brown Jr. R.M., Willison J.H.M. and Richardson C.L. 1976. Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. USA 73: 4565–4569.Google Scholar
  5. Debzi E.M., Chanzy H., Sugiyama J., Tekely P. and Excoffier G. 1991. The IαγIβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24: 6816–6822.Google Scholar
  6. Fengel D. and Wegener G. 1989. Distribution of the components within the wood cell wall. In: Fengel D. and Wegener G. (eds), Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, pp. 227–239, (Chapter 8).Google Scholar
  7. Hackney J.M., Atalla R.H. and VanderHart D.L. 1994. Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble β-1,4-linked polysaccharides:13C-NMR evidence. Int. J. Biol. Macromol. 16: 215–218.Google Scholar
  8. Haigler C.H. and Benziman M. 1982. Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacterxylinum. In: Brown Jr. R.M. (ed.), Cellulose and Other Natural Polymer Systems. Plenum Press, New York, NY, pp. 273–297, (Chapter 14).Google Scholar
  9. Haigler C.H. and Chanzy H. 1989. Electron diffraction analysis of altered cellulose: Implication for cellulose biogenesis. In: Schuerh C. (ed.), Cellulose and Wood: Chemistry and Technology. John Wiley & Sons, New York, NY, pp. 493–506.Google Scholar
  10. Hayashi T., Marsden M.P.F. and Delmer D.P. 1987. Pea xyloglucan and cellulose V. Xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol. 83: 384–389.Google Scholar
  11. Inomata F., Takabe K. and Saiki H. 1992. Cell wall formation of conifer tracheid as revealed by rapid-freeze and substitution method. J. Electron Microsc. 41: 369–374.Google Scholar
  12. Iwata T., Indrarti L. and Azuma J. 1998. Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5: 215–228.Google Scholar
  13. Kai A. and Kitamura H. 1985. The structure of cellulose produced by Acetobacter xylinum in the presence of a fluorescent brightener. The influence of concentration of a brightener in the medium on the structure of cellulose. Bull. Chem. Soc. Jpn. 58: 2860–2862.Google Scholar
  14. Kai A., Kido H. and Ishida N. 1990. The effect of a direct dye on the formation process of the structure of bacterial cellulose. Chem. Lett.: 949–952.Google Scholar
  15. Maeda Y., Awano T., Takabe K. and Fujita M. 2000. Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213: 148–156.Google Scholar
  16. Reis D., Vian B., Chanzy H. and Roland J.C. 1991. Liquid crystaltype assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the Cell 73: 173–178.Google Scholar
  17. Reis D., Vian B. and Roland J.C. 1994. Cellulose-glucuronoxylans and plant cell wall structure. Micron 25: 171–187.Google Scholar
  18. Roland J.C. 1978. Selective staining. In: Hall J.L. (ed.), Electron Microscopy and Cytochemistry of Plant Cells. Elsevier/North-Holland Biomedical Press, Amsterdam, the Netherlands, pp. 35–52, (Chapter 1.7). 73Google Scholar
  19. Roland J.C., Reis D., Vian B. and Roy S. 1989. The helicoidal plant cell wall as a performing cellulose based composite. Biology of the Cell 67: 209–220.Google Scholar
  20. Ruben G.C. and Bokelman G.H. 1989. Structural characterization and visualization in situ and after isolation of tobacco pectin. In: Lewis N.G. and Paice M.G. (eds), Plant CellWall Polymers. American Chemical Society, Washington, DC, pp. 300–311, (Chapter 21).Google Scholar
  21. Sarko A. and Muggli R. 1974. Packing analysis of carbohydrates and polysaccharides III. Valonia cellulose and cellulose II. Macromolecules 7: 486–494.Google Scholar
  22. Schramm M. and Hestrin S. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacterxylinum. J. Gen. Microbiol. 11: 123–129.Google Scholar
  23. Sjöström E. 1971. Wood Chemistry, Fundamentals and Applications. Academic Press, New York, NY.Google Scholar
  24. Sugiyama J. and Harada H. 1986. Ultrastructural localization of crystalline and amorphous materials in the cell walls of Valonia macrophysa. Mokuzai Gakkaishi 32: 770–776.Google Scholar
  25. Sugiyama J., Persson J. and Chanzy H. 1991. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24: 2461–2466.Google Scholar
  26. Thiéry J.P. 1967. Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microscopie 6: 987–1018.Google Scholar
  27. Tokoh C., Takabe K., Fujita M. and Saiki H. 1998. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5: 249–261.Google Scholar
  28. Uhlin K.I., Atalla R.H. and Thompson S. 1995. Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2: 129–144.Google Scholar
  29. Vian B., Reis D. and Roland J.C. 1994. Cholesteric-like crystal analogs in glucuronoxylan-rich cell wall composites: experimental approach of acellular re-assembly from native cellulose. Protoplasma 180: 70–81.Google Scholar
  30. Whitney S.E.C., Brigham J.E., Darke A.H., Reid J.S.G. and Gidley M.J. 1995. In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. The Plant Journal 8: 491–504.Google Scholar
  31. Whitney S.E.C., Brigham J.E., Darke A.H., Reid J.S.G. and Gidley M.J. 1998. Structural aspects of the interaction of mannanbased polysaccharides with bacterial cellulose. Carbohydr. Res. 307: 299–309.Google Scholar
  32. Yamamoto H. and Horii F. 1994. In situ crystallization of bacterial cellulose. I. Influences of polymeric additives, stirring and temperature on the formation of cellulose Iα and Iβ as revealed by cross polarization/magic angle spinning (CP/MAS) 13C NMR spectroscopy. Cellulose 1: 57–66.Google Scholar
  33. Yamamoto H., Horii F. and Hirai A. 1996. In situ crystallization of bacterial cellulose. II. Influences of different polymeric additives on the formation of cellulose Iα and Iβ at the early stage of incubation. Cellulose 3: 229–242.Google Scholar
  34. Zaar K. 1979. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J. Cell. Biol. 80: 773–777.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Chisuzu Tokoh
    • 1
  • Kejjil Junji Takabe
    • 1
    • 2
  • Minoru Fujita
    • 1
  1. 1.Laboratory of Plant Cell Structure, Division of Forest and Biomaterials Science, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Wood Research Institute, Kyoto UniversityUji, KyotoJapan

Personalised recommendations