Advertisement

Plant Ecology

, Volume 160, Issue 1, pp 1–16 | Cite as

Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil

  • Patricia Guidão Cruz Ruggiero
  • Marco Antônio Batalha
  • Vânia Regina Pivello
  • Sérgio Tadeu Meirelles
Article

Abstract

Several studies pointed out soil properties as the prime determinant ofcerrado (the Brazilian savanna) physiognomies, and a gradient from “campocerrado” (a shrub savanna) to “cerradão” (a tallwoodland) has been correlated with a soil fertility gradient. Based on thishypothesis, we investigated soil-vegetation relationships in thePé-de-Gigante Reserve (São Paulo State,SoutheasternBrazil). We randomly distributed 10 quadrats (10 × 10 m) oneach ofthe following physiognomies: “campo cerrado”, “cerradosensu stricto”, “cerradão”, andseasonal semideciduous forest, previously defined by the analysis of satelliteimages (LANDSAT-5). We sampled the woody individuals with stem diameter> 3 cm at soil level, identifying their species. In each quadrat, wecollectedsoil samples at the depths of 0–5, 5–25, 40–60, and80–100 cm, and determined pH, K, Ca, Mg, P, Al, H + Al, basesaturation, aluminium saturation, cation exchange capacity, and percentage ofsand, clay and loam. Obtained data were submitted to a canonical correspondenceanalysis (CCA) and to a detrended correspondence analysis (DCA). Our resultsshowed a clear distinction between semideciduous forest and the cerradophysiognomies, based in soil parameters. The former was related to higherconcentrations of cations and clay in the soil, while the latter was related tohigher concentrations of exchangeable aluminium in the soil surface. The threecerrado physiognomies – “campo cerrado”, “cerradosensu stricto”, and “cerradão”– could not be distinguished considering plant density and the analysedsoil features.

Boundary Brazil Canonical correspondence analysis Cerrado Savanna Semideciduous forest Soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvim P. and AraÚjo W.A. 1952. El suelo como factor ecológico en el desarrolo de la vegetación en el centro-oeste del Brasil. Turrialba 2: 153-160.Google Scholar
  2. Arens K. 1963. As plantas lenhosas dos campos cerrados como vegetação adaptada às deficiências minerais do solo. In: Ferri M.G. (ed.), III Simpósio Sobre o Cerrado. Edgard Blucher/EDUSP, São Paulo, pp. 13-115.Google Scholar
  3. Askew G.P., Moffatt D.J., Montgomery R.F. and Searl P.L. 1971. Soils and soil moisture as factors influencing the distribution of the vegetation formations of the Serra do Roncador, Mato Grosso. In: Ferri M.G. (ed.), III Simpósio Sobre o Cerrado. Edgard Blucher/EDUSP, São Paulo, pp. 150-160.Google Scholar
  4. Batalha M.A. and Mantovani W. 1999. Chaves de identificação das espécies vegetais vasculares baseada em caracteres vegetativos para a ARIE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, SP). Revista do Instituto Florestal 11: 137-158.Google Scholar
  5. Bourlière F. and Hadley M. 1983. Present-day savannas: an overview. In: Bourlière F. (ed.), Tropical Savannas. Elsevier, Oxford.Google Scholar
  6. Camargo O.A., Moniz A.C., Jorge J.A. and Valadares J.M.A.S. 1986. Métodos de análise química e física de solos do Instituto Agronômico do Estado de São Paulo. Boletim Técnico 106. IAC, Campinas.Google Scholar
  7. Challinor D. 1968. Alteration of surface soil characteristics by four tree species. Ecology 49: 286-290.Google Scholar
  8. Coutinho L.M. 1978. O conceito de cerrado. Revista brasileira de Botânica 1: 17-23.Google Scholar
  9. Ellis S. and Mellor A. 1995. Soils and Environment. Routledge, New York.Google Scholar
  10. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) 1999. Sistema Brasileiro de Classificação de Solos. EMBRAPA-SPI, Brasilia.Google Scholar
  11. Fitter A.H. 1987. Spatial and temporal separation of activity in plant communities: prerequisite or consequence of coexistence? In: Gee J.H.R. and Giller P.S. (eds), Organization of Communities: Past and Present. Blackwell, Oxford.Google Scholar
  12. Furley P.A. 1976. Soil-slope-plant relationships in the northern Maya mountains, Belize, Central America. Journal of Biogeography 3: 303-319.Google Scholar
  13. Furley P.A. 1992. Edaphic changes at the forest-savanna boundary with particular reference to the neotropics. In: Furley P.A., Proctor J. and Ratter J.A. (eds), Nature and Dynamics of Forest-Savanna Boundaries. Chapman & Hall, United Kingdom, pp. 91-117.Google Scholar
  14. Furley P.A. 1996. The influence of slope on the nature and distribution of soils and plant communities in the central Brazilian cerrado. Advances in Hillslope Processes 1: 327-345.Google Scholar
  15. Furley P.A. and Ratter J.A. 1988. Soil resources and plant communities of the central Brazilian cerrado and their development. Journal of Biogeography 15: 97-108.Google Scholar
  16. Gibbs P.E., Leitão Filho H.de F. and Shepherd G. 1983. Floristic composition and community structure in na area of Cerrado in SE Brazil. Flora 173: 433-449.Google Scholar
  17. Goedert W.J. 1987. Solos dos Cerrados. Embrapa-CPAC/Nobel, Planaltina.Google Scholar
  18. Goodland R. 1971. A physiognomic analysis of the' cerrado' vegetation of Central Brazil. J. Ecol. 59: 411-419.Google Scholar
  19. Goodland R. and Pollard R. 1973. The Brazilian cerrado vegetation: a fertility gradient. Journal of Ecology 61: 219-224.Google Scholar
  20. Haridasan M. 1982. Aluminium accumulation by some cerrado native species of central Brazil. Plant and Soil 65: 265-273.Google Scholar
  21. Haridasan M. 1992. Observations on soils, foliar nutrients concentrations and floristic composition of cerrado sensu stricto and cerradão communities in central Brazil. In: Furley P.A., Proctor J. and Ratter J.A. (eds), Nature and Dynamics of Forest-Savanna Boundaries. Chapman & Hall, United Kingdom, pp. 171-184.Google Scholar
  22. Kellman M. 1979. Soil enrichment by neotropical savanna trees. Journal of Ecology 67: 565-577.Google Scholar
  23. Kellman M. and Miyanishi K. 1982. Forest seedling establishment in Neotropical savannas: observations and experiments in the Mountain Pine Ridge savanna, Belize. Journal of Biogeography 9: 193-206.Google Scholar
  24. Köppen W. 1948. Climatologia. Fondo de Cultura Económica, Mexico.Google Scholar
  25. Lopes A.S. 1984. Solos sob “Cerrado” Características, Propriedades e Manejo. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba, Brasil.Google Scholar
  26. Mueller-Dombois D. and Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.Google Scholar
  27. Sherpherd A.T.de, Oliveira-Filho G.J., Martins F.R. and Stubbleline W.H. 1989. Environmental factors effecting physiognomic and floristic variation in area of cerrado in central Brazil. Journal of Tropical Ecology 5: 413-431.Google Scholar
  28. Oliveira-Filho A.T., Curi N., Vilela E.A. and Carvalho D.A. 1997. Tree species distribution along soil catenas in a riverside semideciduous forest in the southeastern Brazil. Flora 192: 47-64.Google Scholar
  29. Pivello V.R., Bitencourt M.D., Mantovani W., Mesquita H.N., Batalha M.A. and Shida C. 1998. Proposta de zoneamento ecológico para a Reserva de Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, S.P.). Brazilian Journal of Ecology 2: 108-118.Google Scholar
  30. Pivello V.R., Bitencourt M.D., Mesquita JÚnior H.N.de and Batalha M.A. 1999. Banco de Dados em SIG Para Ecologia Aplicada: Exemplo do Cerrado Pé-de-Gigante, SP. Caderno de Informações Georreferenciadas-CIG 1(3) cap. 4., cap, (http://www.cpa.unicamp.br/revista/cigv1n3a4.html).Google Scholar
  31. Queiroz-Neto J.P.de 1982. Solos da região dos cerrados e suas interpretações (revisão de literatura). Revista Brasileira de Ciência do Solo 6: 1-12.Google Scholar
  32. van Raij B., Quaggio J.A., Cantarella H., Ferreira M.E., Lopes A.S. and Bataglia O.C. 1987. Análise Química de Solos Para Fins de Fertilidade. Fundação Cargill, Campinas.Google Scholar
  33. Ratter J.A., Askew G.P., Montogomery R.F. and Gifford D.R. 1977. Observações adicionais sobre o cerradão de solos mesotróficos no Brasil Central. In: Ferri M.G. (ed.), IV Simpósio Sobre o Cerrado. Itatiaia, São Paulo, pp. 303-316.Google Scholar
  34. Reatto A., Correia J.R. and Spera S.T. 1998. Solos do bioma Cerrado: aspectos pedológicos. In: Sano S.M. and Almeida S.P. (eds), Cerrado: Ambiente e Flora. Embrapa, Planaltina, pp. 47-86.Google Scholar
  35. Ribeiro J.F. 1983. Comparação da concentração de nutrientes na vegetação arbórea e nos solos de um cerrado e um cerradão no Distrito Federal. MSc Dissertation, Universidade de Brasília, Brasília.Google Scholar
  36. Ribeiro J.F, Silva J.C.S and Batmanian G.J. 1985. Fitossociologia de tipos fisionômicos de cerrado em Planaltina, D.F. Revista Brasileira de Botânica 8: 131-42.Google Scholar
  37. Rizzini C.T. 1997. Tratado de Fitogeografia do Brasil. Âmbito Cultural, Rio de Janeiro.Google Scholar
  38. Rouse J.W., Haas R.H., Schell J.A. and Defering D.W. 1973. Monitoring vegetation system in the Great Plains with ERTS. In: Proceedings of the Third Earth Resources Technology Satellite 1 Symposium no. 3. NASA, Washington, pp. 309-317.Google Scholar
  39. Silva JÚnior M.C., da Barros M.F. and Cândido J.F. 1987. Relações entre parâmetros do solo e da vegetação de cerrado na Estação Florestal de Experimentação de Paraopeba, MG. Revista brasileira de Botânica 10: 125-137.Google Scholar
  40. SMA (Secretaria do Meio Ambiente) 1997. Cerrado: Bases Para Conservação e uso sustentável das áreas de cerrado do Estado de São Paulo-Série PROBIO/SP. Secretaria do Meio Ambiente, São Paulo.Google Scholar
  41. SOIL SURVEY STAFF 1990. Keys to Soil Taxonomy. SMSS Technical Monograph No. 6. Blacksburg, Virginia, USA.Google Scholar
  42. Sollins P. 1998. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79: 23-30.Google Scholar
  43. Sparovek G. and Camargo O.A. 1997. Sampling strategies for tropical forest nutrient cycling studies: a case study in São Paulo, Brazil. Ver. Bras. Ci. Solo 21: 635-642.Google Scholar
  44. ter Braak C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.Google Scholar
  45. ter Braak C.J.F. 1988. CANOCO - A - FORTRAN Program for Canonical Community Ordination by Partial Detrended Canonical Correspondences Analysis, Principal Component Analysis and Redundancy Analysis. TNO Institute of Applied Computer Science, Wageningen.Google Scholar
  46. ter Braak C.J.F., Jongman R.H.G. and van Tongeren O.F.R. 1995. Data Analysis in Community and Landscape Ecology. Cambridge Press, Cambridge.Google Scholar
  47. Tilman D. 1985. The resource-ratio hipothesis of plant succession. American Naturalist 125: 827-852.Google Scholar
  48. Tyler G. and Falkengren-Grerup U. 1998. Soil Chemistry and Plant Performance - Ecological considerations. Progress in Botany, 59. Springer-Verlag, Berlin.Google Scholar
  49. Walter H. 1986. Vegetação e Zonas Climáticas. EPU, São Paulo.Google Scholar
  50. Warming E. 1892. Lagoa Santa. EDUSP, São Paulo.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Patricia Guidão Cruz Ruggiero
    • 1
  • Marco Antônio Batalha
    • 2
  • Vânia Regina Pivello
    • 1
  • Sérgio Tadeu Meirelles
    • 1
  1. 1.Department of EcologyUniversity of São PauloSão PauloBrazil
  2. 2.Department of BotanyUniversity of CampinasCampinasBrazil

Personalised recommendations