Pharmaceutical Research

, Volume 8, Issue 1, pp 17–24 | Cite as

Terpenes and the Lipid–Protein–Partitioning Theory of Skin Penetration Enhancement

  • Adrian C. Williams
  • Brian W. Barry


A series of terpenes has been assessed as skin penetration enhancers towards the model polar penetrant 5-fluorouracil (5-FU). Cyclic terpenes were selected from the chemical classes of hydrocarbons (e.g., α-pinene), alcohols (e.g., α-terpineol), ketones (e.g., carvone), and oxides (e.g., 1,8-cineole, ascaridole). Permeation experiments were performed on excised human epidermal membranes and the terpenes varied in their activities; α-pinene only doubled the permeability coefficient of aqueous 5-FU, whereas 1,8-cineole caused a near 95-fold increase. Essential oils, e.g., chenopodium (70% ascaridole), were less effective than the corresponding isolated terpenes. 5-FU is less soluble in the terpenes than in water, and the terpenes did not exert their action by increasing partitioning of the drug into the membranes as illustrated by stratum corneum:water partitioning studies. The penetration enhancers increased drug diffusivity through the membranes, an effect which correlated empirically with the enhancer activities. The principal mode of action of these accelerants may be described by the lipid–protein–partitioning theory; the terpenes interacted with intercellular stratum corneum lipids to increase diffusivity, and the accelerant effects were not due to partitioning phenomena. Keratin interaction was assumed negligible.

percutaneous absorption skin penetration enhancers terpenes lipid–protein–partitioning theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Southwell and B. W. Barry. J. Invest. Dermatol. 80:507–514 (1983).Google Scholar
  2. 2.
    B. W. Barry, D. Southwell, and R. Woodford. J. Invest. Dermatol. 82:49–52 (1984).Google Scholar
  3. 3.
    D. Southwell and B. W. Barry. Int. J. Pharm. 22:291–298 (1984).Google Scholar
  4. 4.
    B. J. Aungst, N. J. Rogers, and E. Shefter. Int. J. Pharm. 33:225–234 (1986).Google Scholar
  5. 5.
    M. Goodman and B. W. Barry. In R. L. Bronaugh and H. I. Maibach (eds.), Percutaneous Absorption, 2nd ed., Marcel Dekker, New York and Basel, 1989, Chap. 33.Google Scholar
  6. 6.
    H. Okamoto, M. Hashida, and H. Sezaki. J. Pharm. Sci. 77:418–424 (1988).Google Scholar
  7. 7.
    J. Hadgraft. Pharm. Int. 5:252–254 (1984).Google Scholar
  8. 8.
    B. W. Barry. Dermatological Formulations: Percutaneous Absorption, Marcell Dekker, New York and Basel, 1983.Google Scholar
  9. 9.
    R. Woodford and B. W. Barry. J. Toxicol. Cut. Ocular Toxicol. 5:165–175 (1986).Google Scholar
  10. 10.
    D. L. J. Opdyke. Fd. Cosmet. Toxicol. 12–14:Supplements (1974–1976).Google Scholar
  11. 11.
    A. R. Pinder. The Chemistry of the Terpenes, Chapman and Hall, London, 1960.Google Scholar
  12. 12.
    J. R. Bond and B. W. Barry. J. Invest. Dermatol. 90:810–813 (1988).Google Scholar
  13. 13.
    S. M. Harrison, B. W. Barry, and P. H. Dugard. J. Pharm. Pharmacol. 36:261–262 (1984).Google Scholar
  14. 14.
    A. M. Kligman and E. Christophers. Arch. Dermatol. 88:70–73 (1963).Google Scholar
  15. 15.
    S. A. Akhter, S. L. Bennett, I. L. Waller, and B. W. Barry. Int. J. Pharm. 21:17–26 (1984).Google Scholar
  16. 16.
    M. Goodman and B. W. Barry. J. Invest. Dermatol. 91:323–327 (1988).Google Scholar
  17. 17.
    J. L. Cohen and R. B. Stoughton. J. Invest. Dermatol. 62:507–509 (1974).Google Scholar
  18. 18.
    M. Goodman. Ph.D. thesis, University of Bradford, Bradford, 1986.Google Scholar
  19. 19.
    C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley and Sons, New York, 1979.Google Scholar
  20. 20.
    J. R. Bond and B. W. Barry. J. Invest. Dermatol. 90:486–489 (1988).Google Scholar
  21. 21.
    B. W. Barry. J. Control. Release 6:85–97 (1987).Google Scholar
  22. 22.
    J. A. Zupan. Eur. Patent Publ. No. 0069385 (1983).Google Scholar
  23. 23.
    J. R. Bond and B. W. Barry. Int. J. Pharm. 41:91–93 (1988).Google Scholar
  24. 24.
    R. H. Guy, E. M. Carlstrom, D. A. W. Bucks, R. S. Hinz, and H. I. Maibach. J. Pharm. Sci. 75:968–972 (1986).Google Scholar
  25. 25.
    W. J. Lambert, W. I. Higuchi, K. Knutson, and S. L. Krill. J. Pharm. Sci. 78:925–928 (1989).Google Scholar
  26. 26.
    E. S. Nuwayser, M. H. Gay, D. J. De Roo, and P. D. Baskovich. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:213–214 (1988).Google Scholar
  27. 27.
    T. Nagai, Q. D. Yi, R. I. Higuchi, Y. Akitoshi, and K. Takayama. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:154–155 (1988).Google Scholar
  28. 28.
    J. Yamahara, H. Kashiwa, K. Kishi, and H. Fujimura. Chem. Pharm. Bull. 37:855–856 (1989).Google Scholar
  29. 29.
    T. Nagai, H. Okabe, A. Ogura, and K. Takayama. Proc. Int. Symp. Control. Rel. Bioact. Mater. 16:181–182 (1989).Google Scholar
  30. 30.
    H. Okabe, K. Takayama, A. Ogura, and T. Nagai. Drug Design Deliv. 4:313–321 (1989).Google Scholar
  31. 31.
    B. W. Barry. Int. J. Cosmet. Sci. 10:281–293 (1988).Google Scholar
  32. 32.
    R. H. Guy and J. Hadgraft. Pharm. Res. 5:753–758 (1988).Google Scholar
  33. 33.
    D. Chow, S. Tenjarla, M. Tsui, S. Asici, and D. Hsieh. Proc. Int. Symp. Control. Rel. Bioact. Mater. 15:85–86 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Adrian C. Williams
    • 1
  • Brian W. Barry
    • 1
  1. 1.Pharmaceutical Technology, The School of PharmacyUniversity of BradfordBradfordU.K.

Personalised recommendations