Advertisement

Semantic Granularity in Ontology-Driven Geographic Information Systems

  • Frederico Fonseca
  • Max Egenhofer
  • Clodoveu Davis
  • Gilberto Câmara
Article

Abstract

The integration of information of different kinds, such as spatial and alphanumeric at different levels of detail, is a challenge. While a solution is not reached, it is widely recognized that the need to integrate information is so pressing that it does not matter if detail is lost, as long as integration is achieved. This paper shows the potential for information retrieval at different levels of granularity inside the framework of information systems based on ontologies. Ontologies are theories that use a specific vocabulary to describe entities, classes, properties and functions related to a certain view of the world. The use of an ontology, translated into an active information system component, leads to ontology-driven information systems and, in the specific case of GIS, leads to what we call ontology-driven geographic information systems.

Ontology information integration granularity GIS spatial information semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Albano, R. Bergamini, G. Ghelli and R. Orsini, An object data model with roles, in: 19th International Conference on Very Large Data Bases, Dublin, Ireland, eds. R. Agrawal, S. Baker and D. Bell (1993) pp. 39-51.Google Scholar
  2. [2]
    K. Beard, How to survive a single detailed database, in: AUTO-CARTO 8, Eighth International Symposium on Computer-Assisted Cartography, Baltimore, MD, ed. N.R. Chrisman (1987) pp. 211-220.Google Scholar
  3. [3]
    M. Bertolotto and M. Egenhofer, Progressive vector transmission, in: 7th ACM Symposium on Advances in Geographic Information Systems, ed. C.B. Medeiros (ACM Press, New York, 1999) pp. 152-157.Google Scholar
  4. [4]
    M. Betz, Interoperable objects, Dr. Dobb's Journal 4 (1994) 22-26.Google Scholar
  5. [5]
    Y. Bishr, Semantic aspects of interoperable GIS, Ph.D. Thesis, Wageningen Agricultural University, The Netherlands (1997).Google Scholar
  6. [6]
    C. Bock and J. Odell, A more complete model of relations and their implementation: roles, Journal of Object-Oriented Programming 11 (1998) 51-54.Google Scholar
  7. [7]
    D. Bryant and B. Tversky, Internal and external spatial frameworks for representing described scenes, Journal of Memory and Language 31 (1992) 74-98.Google Scholar
  8. [8]
    P. Burrough and A. Frank (eds.), Spatial Conceptual Models for Geographic Objects with Undetermined Boundaries (Taylor & Francis, London, 1996).Google Scholar
  9. [9]
    G. Câmara, A. Monteiro, J. Paiva, J. Gomes and L. Velho, Towards a unified framework for geographical data models, in: Geoinfo 2000-II Workshop Brasileiro de Geoinformatica, São Paulo, Brazil, ed. L. Figueiredo (2000) pp. 37-44.Google Scholar
  10. [10]
    G. Câmara, R.C.M. Souza, U.M. Freitas and J.C.P. Garrido, SPRING: integrating remote sensing and GIS with object-oriented data modelling, Computers and Graphics 20 (1996) 395-403.Google Scholar
  11. [11]
    L. Cardelli, A semantics of multiple inheritance, in: Semantics of Data Types, eds. G. Kahn, D. McQueen and G. Plotkin (Springer, New York, 1984) pp. 51-67.Google Scholar
  12. [12]
    R. Casati and A. Varzi, Parts and Places (MIT Press, Cambridge, MA, 1999).Google Scholar
  13. [13]
    P. Clemens, Coming Attractions in Software Architecture (Carnegie Mellon University, Pittsburgh, PA, 1996).Google Scholar
  14. [14]
    H. Couclelis, People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS, in: Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, eds. A.U. Frank, I. Campari and U. Formentini (Springer, New York, 1992) pp. 65-77.Google Scholar
  15. [15]
    C. Davis and A. Laender, Multiple representations in GIS: materialization through map generalization, geometric and spatial analysis operations, in: 7th ACM Symposium on Advances in Geographic Information Systems, ed. C.B. Medeiros (ACM Press, New York, 1999) pp. 60-65.Google Scholar
  16. [16]
    M. Egenhofer and A. Frank, Object-oriented modeling for GIS, Journal of the Urban and Regional Information Systems Association 4 (1992) 3-19.Google Scholar
  17. [17]
    M. Egenhofer, J. Glasgow, O. Günther, J. Herring and D. Peuquet, Progress in computational methods for representing geographical concepts, International Journal of Geographical Information Science 13 (1999) 775-796.Google Scholar
  18. [18]
    F. Fonseca and C. Davis, Using the internet to access geographic information: an OpenGis prototype, in: Interoperating Geographic Information Systems, eds. M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman (Kluwer Academic, Norwell, MA, 1999) pp. 313-324.Google Scholar
  19. [19]
    F. Fonseca, M. Egenhofer, C. Davis and K. Borges, Ontologies and knowledge sharing in urban GIS, Computer, Environment and Urban Systems 24 (2000) 232-251.Google Scholar
  20. [20]
    A. Frank, Spatial ontology, in: Spatial and Temporal Reasoning, ed. O. Stock (Kluwer Academic, Dordrecht, 1997) pp. 135-153.Google Scholar
  21. [21]
    A. Frank, Tiers of ontology and consistency constraints in geographical information systems, International Journal of Geographical Information Science 15 (2001) 667-678.Google Scholar
  22. [22]
    M. Gahegan, Characterizing the semantic content of geographic data, models and systems, in: Interoperating Geographic Information Systems, eds. M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman (Kluwer Academic, Norwell, MA, 1999) pp. 71-84.Google Scholar
  23. [23]
    J. Gomes and L. Velho, Abstraction paradigms for computer graphics, The Visual Computer 11 (1995) 227-239.Google Scholar
  24. [24]
    M. Goodchild, Geographical data modeling, Computers and Geosciences 18 (1992) 401-408.Google Scholar
  25. [25]
    M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman, Interoperating Geographic Information Systems (Kluwer Academic, Norwell, MA, 1999).Google Scholar
  26. [26]
    T. Gruber, A translation approach to portable ontology specifications, Knowledge Systems Laboratory, Stanford University, Stanford, CA (1992).Google Scholar
  27. [27]
    N. Guarino, Concepts, attributes and arbitrary relations, Data and Knowledge Engineering 8 (1992) 249-261.Google Scholar
  28. [28]
    N. Guarino, Formal ontology and information systems, in: Formal Ontology in Information Systems, ed. N. Guarino (IOS Press, Amsterdam, 1998) pp. 3-15.Google Scholar
  29. [29]
    N. Guarino, Semantic matching: formal ontological distinctions for information organization, extraction, and integration, in: Information Extraction: A Multidisciplinary Approach to an Emerging Information Technology, International Summer School, SCIE-97, Frascati, Italy, ed. M. Pazienza (1997) pp. 139-170.Google Scholar
  30. [30]
    N. Guarino and C. Welty, A formal ontology of properties, in: Proceedings of EKAW-2000: The 12th International Conference on Knowledge Engineering and Knowledge Management, eds. R. Dieng and O. Corby (2000) pp. 97-112.Google Scholar
  31. [31]
    N. Guarino and C. Welty, Ontological analysis of taxonomic relationships, in: Proceedings of ER-2000: The 19th International Conference on Conceptual Modeling, eds. A. Laender and V. Storey (2000) pp. 210-224.Google Scholar
  32. [32]
    D.C. Halbert and P.D. O'Brien, Using types and inheritance in object-oriented languages, in: Proceedings of ECOOP'87 European Conference on Object-Oriented Programming, eds. J. Bézivin, J.-M. Hullot, P. Cointe and H. Lieberman (1987) pp. 20-31.Google Scholar
  33. [33]
    F. Harvey, Designing for interoperability: overcoming semantic differences, in: Interoperating Geographic Information Systems, eds. M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman (Kluwer Academic, Norwell, MA, 1999) pp. 85-98.Google Scholar
  34. [34]
    P. Hayes, The naive physics manifesto, in: Expert Systems in the Microelectronic Age, ed. D. Michie (Edinburgh University Press, Edinburgh, 1978) pp. 242-270.Google Scholar
  35. [35]
    K. Hornsby, Identity-based reasoning about spatio-temporal change, Ph.D. Thesis, University of Maine, Orono, ME (1999).Google Scholar
  36. [36]
    W. Huxhold and A. Levinsohn, Managing Geographic Information System Projects (Oxford University Press, New York, 1995).Google Scholar
  37. [37]
    V. Kashyap and A. Sheth, Semantic heterogeneity in global information system: the role of metadata, context and ontologies, in: Cooperative Information Systems: Current Trends and Directions, eds. M. Papazoglou and G. Schlageter (Academic Press, London, 1996) pp. 139-178.Google Scholar
  38. [38]
    W. Kuhn, Are displays maps or views?, in: AUTO-CARTO 10, Tenth International Symposium on Computer-Assisted Cartography, Baltimore, MD, eds. D. Mark and D. White (1991) pp. 261-274.Google Scholar
  39. [39]
    H.A. Kuno and E.A. Rundensteiner, The multiview OODB view system: design and implementation, TAPOS-Theory and Practice of Object Systems 2 (1996) 202-225.Google Scholar
  40. [40]
    S.M. Lewandowsky, Frameworks for component-based client/server computing, ACM Computing Surveys 30 (1998) 4-27.Google Scholar
  41. [41]
    P. Longley, M. Goodchild, D. Maguire and D. Rhind (eds.), Geographical Information Systems (Wiley, New York, 1999).Google Scholar
  42. [42]
    D. Mark, Toward a theoretical framework for geographic entity types, in: Spatial Information Theory, eds. A. Frank and I. Campari (Springer, Berlin, 1993) pp. 270-283.Google Scholar
  43. [43]
    E. Mena, V. Kashyap, A. Illarramendi and A. Sheth, Domain specific ontologies for semantic information brokering on the global information infrastructure, in: Formal Ontology in Information Systems, ed. N. Guarino (IOS Press, Amsterdam, 1998) pp. 269-283.Google Scholar
  44. [44]
    A.O. Mendelzon, T. Milo and E. Waller, Object migration, in: Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Minneapolis, MN (1994) pp. 232-242.Google Scholar
  45. [45]
    B. Meyer, Object-Oriented Software Construction (Prentice-Hall, New York, 1988).Google Scholar
  46. [46]
    J. Nunes, Geographic space as a set of concrete geographical entities, in: Cognitive and Linguistic Aspects of Geographic Space, eds. D. Mark and A. Frank (Kluwer Academic, Norwell, MA, 1991) pp. 9-33.Google Scholar
  47. [47]
    H. Onsrud and G. Rushton (eds.), Sharing Geographic Information, Rutgers (CUPR Press, New Brunswick, NJ, 1995).Google Scholar
  48. [48]
    OpenGIS, The OpenGIS ® Guide-Introduction to Interoperable Geoprocessing and the OpenGIS Specification (Open GIS Consortium, Wayland, MA, 1996).Google Scholar
  49. [49]
    C. Parent, S. Spaccapietra and E. Zimanyi, MurMur: Database management of multiple representations, in: The AAAI-2000 Workshop on Spatial and Temporal Granularity, Austin, TX, eds. C. Bettini and A. Montanari (2000) pp. 61-64.Google Scholar
  50. [50]
    B. Pernici, Objects with roles, in: IEEE/ACM Conference on Office Information Systems, Cambridge, MA, (1990) pp. 205-215.Google Scholar
  51. [51]
    A. Requicha, Representations for rigid solids: theory methods and systems, ACMComputing Surveys 12 (1980) 437-464.Google Scholar
  52. [52]
    A. Rodríguez, Assessing semantic similarity among spatial entity classes, Ph.D. Thesis, University of Maine, Orono, ME (2000).Google Scholar
  53. [53]
    A. Rodríguez, M. Egenhofer and R. Rugg, Assessing semantic similarity among geospatial feature class definitions, in: Interoperating Geographic Information Systems-Second International Conference, INTEROP'99, eds. A. Vckovski, K. Brassel and H.-J. Schek (Springer, Berlin, 1999) pp. 1-16.Google Scholar
  54. [54]
    J. Searle, The Construction of Social Reality (The Free Press, New York, 1995).Google Scholar
  55. [55]
    A. Sheth, Changing focus on interoperability in information systems: from system, syntax, structure to semantics, in: Interoperating Geographic Information Systems, eds. M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman (Kluwer Academic, Norwell, MA, 1999) pp. 5-29.Google Scholar
  56. [56]
    B. Smith, On drawing lines on a map, in: Spatial Information Theory-A Theoretical Basis for GIS, International Conference COSIT '95, eds. A. Frank and W. Kuhn (Springer, Berlin, 1995) pp. 475-484.Google Scholar
  57. [57]
    B. Smith and D. Mark, Ontology and geographic kinds, in: International Symposium on Spatial Data Handling, Vancouver, BC, Canada (1998) pp. 308-320.Google Scholar
  58. [58]
    M. Sondheim, K. Gardels and K. Buehler, GIS interoperability, in: Geographical Information Systems 1 Principles and Technical Issues, eds. P. Longley, M. Goodchild, D. Maguire and D. Rhind (Wiley, New York, 1999) pp. 347-358.Google Scholar
  59. [59]
    F. Steimann, On the representation of roles in object-oriented and conceptual modelling, Data & Knowledge Engineering 35 (2000) 83-106.Google Scholar
  60. [60]
    F. Steimann, Roles = interfaces: a merger of concepts, Journal of Object-Oriented Programming (2001) 23-32.Google Scholar
  61. [61]
    J. Stell and M. Worboys, Stratified map spaces: a formal basis for multi-resolution spatial databases, in: International Symposium on Spatial Data Handling, Vancouver, BC, Canada (1998) pp. 180-189.Google Scholar
  62. [62]
    J. Su, Dynamic constraints and object migration, in: 17th International Conference on Very Large Data Bases, eds. G. Lohman, A. Sernadas and R. Camps, Barcelona, Spain (1991) pp. 233-242.Google Scholar
  63. [63]
    M. Tanaka and T. Ichikawa, A visual user interface for map information retrieval based on semantic significance, IEEE Transactions on Software Engineering, SE 14 (1988) 666-670.Google Scholar
  64. [64]
    E. Tempero and R. Biddle, Simulating multiple inheritance in Java, Victoria University of Wellington, School of Mathematical and Computing Sciences, Wellington, New Zealand (1998).Google Scholar
  65. [65]
    S. Timpf and A. Frank, Using hierarchical spatial data structures for hierarchical spatial reasoning, in: Spatial Information Theory-a Theoretical Basis for GIS, International Conference COSIT '97, eds. S. Hirtle and A. Frank (Springer, Berlin, 1997) pp. 69-83.Google Scholar
  66. [66]
    USGS, View of the Spatial Data Transfer Standard (SDTS) Document (1998).Google Scholar
  67. [67]
    A. Vckovski, International Journal of Geographical Information Science. Special Issue: Interoperability in GIS 12 (1998) 297-298.Google Scholar
  68. [68]
    A. Vckovski, Preface, in: Interoperating Geographic Information Systems-Second International Conference, INTEROP'99, eds. A. Vckovski, K. Brassel and H.-J. Schek (Springer, Berlin, 1999) pp. V-VI.Google Scholar
  69. [69]
    G. Volta and M. Egenhofer, Interaction with GIS attribute data based on categorical coverages, in: Spatial Information Theory, European Conference COSIT '93, eds. A. Frank and I. Campari (Springer, New York, 1993) pp. 215-233.Google Scholar
  70. [70]
    G. Wiederhold, Interoperation, mediation and ontologies, in: International Symposium on Fifth Generation Computer Systems (FGCS94), ICOT, Tokyo, Japan (1994) pp. 33-48.Google Scholar
  71. [71]
    R. Wong, H. Chau and F. Lochovsky, A data model and semantics of objects with dynamic roles, in: 13th International Conference on Data Engineering, eds. M. Jackson and C. Pu, Birmingham, UK (1997) pp. 402-411.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Frederico Fonseca
    • 1
  • Max Egenhofer
    • 2
  • Clodoveu Davis
    • 3
  • Gilberto Câmara
    • 4
  1. 1.School of Information Sciences and TechnologyPennsylvania State UniversityUniversity ParkUSA
  2. 2.National Center for Geographic Information and Analysis and Department of Spatial Information Science and EngineeringUniversity of MaineOronoUSA
  3. 3.Prodabel – Empresa de Informática e Informação do Município de Belo HorizonteBelo Horizonte MGBrazil
  4. 4.National Institute for Space Research (INPE), Image Processing Division –Brazil

Personalised recommendations