The Ramanujan Journal

, Volume 6, Issue 2, pp 209–270

# Applications of the Hypergeometric Method to the Generalized Ramanujan-Nagell Equation

• Mark Bauer
• Michael A. Bennett
Article

## Abstract

In this paper, we refine work of Beukers, applying results from the theory of Padé approximation to (1 − z)1/2 to the problem of restricted rational approximation to quadratic irrationals. As a result, we derive effective lower bounds for rational approximation to $$\sqrt m$$ (where m is a positive nonsquare integer) by rationals of certain types. Forexample, we have
$$\left| {\sqrt 2 - \frac{p}{q}} \right| \gg q^{ - 1.47} {\text{ and }}\left| {\sqrt 3 - \frac{p}{q}} \right| \gg q^{ - 1.62}$$
provided q is a power of 2 or 3, respectively. We then use this approach to obtain sharp bounds for the number of solutions to certain families of polynomial-exponential Diophantine equations. In particular, we answer a question of Beukers on the maximal number of solutions of the equation x2 + D = pn where D is a nonzero integer and p is an odd rational prime, coprime to D.
Ramanujan-Nagell equation hypergeometric method Padé approximation

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
R. Apéry, “Sur une équation diophantienne,” C. R. Acad. Sci. Paris Sér. A 251 (1960), 1451-1452.Google Scholar
2. 2.
A. Baker, “Rational approximations to certain algebraic numbers,” Proc. London Math. Soc. 14(3) (1964), 385-398.Google Scholar
3. 3.
A. Baker, “Rational approximations to 3?2 and other algebraic numbers,” Quart. J. Math. Oxford Ser. 15(2) (1964), 375-383.Google Scholar
4. 4.
E. Bender and N. Herzberg, “Some Diophantine equations related to the quadratic form ax 2 + by 2,” Bull. Amer. Math. Soc. 81 (1975), 161-162.Google Scholar
5. 5.
E. Bender and N. Herzberg, “Some Diophantine equations related to the quadratic form ax 2 + by 2,” Studies in algebra and number theory, Adv. in Math. Suppl. Stud., Vol. 6, Academic Press, New York-London, 1979, pp. 219-272.Google Scholar
6. 6.
M. Bennett, “Simultaneous rational approximation to binomial functions,” Trans. Amer. Math. Soc. 348 (1996), 1717-1738.Google Scholar
7. 7.
M. Bennett, “Effective measures of irrationality for certain algebraic numbers,” J. Austral. Math. Soc. 62 (1997), 329-344.Google Scholar
8. 8.
M. Bennett, “Explicit lower bounds for rational approximation to algebraic numbers,” Proc. London Math. Soc. 75 (1997), 63-78.Google Scholar
9. 9.
F. Beukers, The generalised Ramanujan-Nagell equation. Dissertation, Rijksuniversiteit, Leiden, 1979. With a Dutch summary. Rijksuniversiteit te Leiden, Leiden, 1979, 57 pp.Google Scholar
10. 10.
F. Beukers, “On the generalized Ramanujan-Nagell equation I,” Acta Arith. 38 (1980/1981), 389-410.Google Scholar
11. 11.
F. Beukers, “On the generalized Ramanujan-Nagell equation II,” Acta Arith. 39 (1981), 113-123.Google Scholar
12. 12.
Y. Bilu, G. Hanrot, and P. Voutier, “Existence of primitive divisors of Lucas and Lehmer numbers,” J. Reine Angew. Math. 539 (2001), 75-122.Google Scholar
13. 13.
Y. Bugeaud and T. Shorey, “On the number of solutions of the generalized Ramanujan-Nagell equation,” J. Reine Angew. Math. 539 (2001), 55-74.Google Scholar
14. 14.
X. Chen, Y. Guo, and M. Le, “On the number of solutions of the generalized Ramanujan-Nagell equation x 2 + D = k n,” Acta Math. Sinica 41 (1998), 1249-1254.Google Scholar
15. 15.
X. Chen and M. Le, “On the number of solutions of the generalized Ramanujan-Nagell equation x 2?D = k n,” Publ. Math. Debrecen 49 (1996), 85-92.Google Scholar
16. 16.
G.V. Chudnovsky, “On the method of Thue-Siegel,” Ann. Math. II Ser. 117 (1983), 325-382.Google Scholar
17. 17.
E.L. Cohen, “On the Ramanujan-Nagell equation and its generalizations,” Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, pp. 81-92.Google Scholar
18. 18.
C. Heuberger and M. Le, “On the generalized Ramanujan-Nagell equation x 2 + D = p z,” J. Number Theory 78 (1999), 312-331.Google Scholar
19. 19.
M. Le, “On the generalized Ramanujan-Nagell equation x 2 ? D = p n,” Acta Arith. 58 (1991), 289-298.Google Scholar
20. 20.
M. Le, “On the number of solutions to the Diophantine equation x 2 ? D = p nActa Math. Sinica 34 (1991), 378-387 (Chinese).Google Scholar
21. 21.
M. Le, “On the number of solutions of the generalized Ramanujan-Nagell equation x 2 ? D = 2n+2,” Acta Arith. 60 (1991), 149-167.Google Scholar
22. 22.
M. Le, “On the Diophantine equation x 2 + D = 4p n,” J. Number Theory 41 (1992), 87-97.Google Scholar
23. 23.
M. Le, “On the generalized Ramanujan-Nagell equation x 2?D = 2n+2,” Trans. Amer.Math. Soc. 334 (1992), 809-825.Google Scholar
24. 24.
M. Le, “On the Diophantine equation x 2 ? D = 4p n,” J. Number Theory 41 (1992), 257-271.Google Scholar
25. 25.
M. Le, “On the Diophantine equations d 1 x 2 + 22m d 2 = y n and d 1 x 2 + d 2 = 4y n,” Proc. Amer. Math. Soc. 118 (1993), 67-70.Google Scholar
26. 26.
M. Le, “On the Diophantine equation D 1 x 2 + D 2 = 2n+2,” Acta Arith. 64 (1993), 29-41.Google Scholar
27. 27.
M. Le, “A note on the Diophantine equation x 2 + 4D = y p,” Monatsh. Math. 116 (1993), 283-285.Google Scholar
28. 28.
M. Le, “On the number of solutions of the Diophantine equation x 2 + D = p n,” C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 135-138.Google Scholar
29. 29.
M. Le, “On the number of solutions of the generalized Ramanujan-Nagell equation x 2 ? D = p n,” Publ. Math. Debrecen 45 (1994), 239-254.Google Scholar
30. 30.
M. Le, “A note on the generalized Ramanujan-Nagell equation,” J. Number Theory 50 (1995), 193-201.Google Scholar
31. 31.
M. Le, “A note on the number of solutions of the generalized Ramanujan-Nagell equation x 2 ? D = k n,” Acta Arith. 78 (1996), 11-18.Google Scholar
32. 32.
M. Le, “A note on the Diophantine equation D 1 x 2 + D 2 = 2y n,” Publ. Math. Debrecen 51 (1997), 191-198.Google Scholar
33. 33.
M. Le, “On the Diophantine equation (x 3 ? 1)/(x ? 1) = (y n ? 1)/(y ? 1),” Trans. Amer. Math. Soc. 351 (1999), 1063-1074.Google Scholar
34. 34.
K. Mahler, “Ein Beweis des Thue-Siegelschen Satzes über die Approximation algebraischer Zahlen für binomische Gleichungen,” Math. Ann. 105 (1931), 267-276.Google Scholar
35. 35.
K. Mahler, “Zur Approximation algebraischer Zahlen, I: Ueber den grössten Primteiler binärer Formen,” Math. Ann. 107 (1933), 691-730.Google Scholar
36. 36.
M. Mignotte, “A corollary to a theorem of Laurent-Mignotte-Nesterenko,” Acta Arith. 86 (1998), 101-111.Google Scholar
37. 37.
T. Nagell, “The diophantine equation x 2 + 7 = 2n,” Ark. Math. 4 (1960), 185-187.Google Scholar
38. 38.
S. Ramanujan, “Question 464,” J. Indian Math. Soc. 5 (1913), 120.Google Scholar
39. 39.
D. Ridout, “The p-adic generalization of the Thue-Siegel-Roth theorem,” Mathematika 5 (1958), 40-48.Google Scholar
40. 40.
J.B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers,” Ill, J. Math. 6 (1962), 64-94.Google Scholar
41. 41.
L. Schoenfeld, “Sharper bounds for the Chebyshev functions ?(x) and ?(x) II,” Math. Comp. 30 (1976), 337-360.Google Scholar
42. 42.
C.L. Siegel, “Die Gleichung ax n ? by n = c,” Math. Ann. 114 (1937), 57-68.Google Scholar
43. 43.
A. Thue, “Berechnung aller Lösungen gewisser Gleichungen von der form,” Vid. Skrifter I Mat.-Naturv. Klasse (1918), 1-9.Google Scholar
44. 44.
N. Tzanakis and J. Wolfskill, “On the Diophantine equation y 2 = 4q n +4q+1,” J. Number Theory 23 (1986), 219-237.Google Scholar
45. 45.
N. Tzanakis and J.Wolfskill, “The Diophantine equation x 2 = 4q a/2 +4q +1, with an application to coding theory,” J. Number Theory 26 (1987), 96-116.Google Scholar
46. 46.
T. Xu and M. Le, “On the Diophantine equation D 1 x 2+D 2 = k n,” Publ. Math. Debrecen 47 (1995), 293-297.Google Scholar
47. 47.
P. Yuan, “On the number of the solutions of x 2D = p n,” Sichuan Daxue Xuebao 35 (1998), 311-316Google Scholar