, Volume 125, Issue 1, pp 69–79 | Cite as

The Role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris L.)

  • William C. Johnson
  • Paul Gepts


Epistasis is a pervasive phenomenon in biology. Nevertheless, attempts at identifying epistatic interactions with quantitative trait loci (QTL) analyses have yielded inconsistent results. In this study, we attempt to determine the genetic control of outbreeding depression and the possible role of epistasis following a wide cross in common bean (Phaseolus vulgaris L.). A recombinant inbred population, derived from a cross between Andean and Mesoamerican common bean cultivars, was evaluated in two markedly contrasting environments. A low-density linkage map based on AFLPs was used to locate QTLs for the number of days to maturity, average daily biomass and seed yield accumulation, and harvest index. Both independently acting and digenic epistatic QTLs of similar magnitude were identified. A majority of the loci involved in these epistatic interactions did not have an independent effect. Although we did find evidence for strong epistatic control of the traits investigated, we also found, in contrast to other recent studies, that there was no evidence for a bias toward coadapted gene complexes at the level of digenic epistasis. We discuss these results in relation to the role of epistasis in the evolutionary history of the species and methodological difficulties in detecting epistasis.

digenic interactions linkage map inbreeding depression Phaseolus vulgaris QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam-Blondon, A., M. Sévignac, H. Bannerot & M. Dron, 1994. SCAR, RAPD and RFLP markers tightly linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88: 865–870.CrossRefGoogle Scholar
  2. Avery, L. & S. Wasserman, 1993. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8: 312–316.Google Scholar
  3. Cheverud, J. & E. Routman, 1996. Epistasis as a source of increased additive genetic variance at population bottlenecks. Evolution 50: 1042–1051.CrossRefGoogle Scholar
  4. Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia Univ. Press, New York.Google Scholar
  5. Doerge, R. & A. Rebai, 1996. Significance thresholds for QTL interval mapping tests. Heredity 76: 459–464.Google Scholar
  6. Edwards, M., T. Helentjaris, S. Wright & C. Stuber, 1992. Molecular-marker facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83: 765–774.CrossRefGoogle Scholar
  7. Eshed, Y. & D. Zamir, 1995. An introgression line population of Lycoperison pennellii in the cultivated tomato enables the identi-fication and fine mapping of yield-associated QTL. Genetics 141: 1147–1162.PubMedGoogle Scholar
  8. Eshed, Y. & D. Zamir, 1996. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807–1817.PubMedGoogle Scholar
  9. Feinberg, A.P. & B. Vogelstein, 1984. Addendum: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analyt Biochem 137: 266–267.PubMedCrossRefGoogle Scholar
  10. Fenster, C., L. Galloway & L. Chao, 1997. Epistasis and its consequences for the evolution of natural populations. Trends Ecol Evol 12: 282–286.CrossRefGoogle Scholar
  11. Frankel, W. & N. Schork, 1996. Who's afraid of epistasis? Nature Genetics 14: 371–373.PubMedCrossRefGoogle Scholar
  12. Freyre, R., P. Skroch, V. Geffroy, A.-F. Adam-Blondon, A. Shirmohamadali, W. Johnson, V. Llaca, R. Nodari, P. Pereira, S.-M. Tsai, J. Tohme, M. Dron, J. Nienhuis, C. Vallejos, & P. Gepts, 1998. Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97: 847–856.CrossRefGoogle Scholar
  13. Gepts, P., 1993. The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27: 51–94.Google Scholar
  14. Gepts, P., 1998. Origin and evolution of common bean: past events and recent trends. HortScience 33: 1124–1130.Google Scholar
  15. Gepts, P. & F.A. Bliss, 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76: 447–450.Google Scholar
  16. Gepts, P., V. Llaca, R.O. Nodari & L. Panella, 1992. Analysis of seed proteins, isozymes, and RFLPs for genetic and evolutionary studies in Phaseolus. In: H.-F. Linskens & J.F. Jackson (Eds.), Modern Methods of Plant Analysis (New Series): Seed Analysis, pp. 63–93. Springer, Berlin.Google Scholar
  17. Gepts, P., T.C. Osborn, K. Rashka & F.A. Bliss, 1986. Phaseolinprotein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40: 451–468.Google Scholar
  18. Greenfield, A. & P. Koopman, 1996. SRY and mammalian sex determination. Curr Topics Dev Biol 34: 1–23.Google Scholar
  19. Hanson, M., B. Gaut, A. Stec, S. Fuerstenberg, M. Goodman, E. Coe & J. Doebley, 1996. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143: 1395–1407.PubMedGoogle Scholar
  20. Holland, J., H. Moser, L. O'Donoghue & M. Lee, 1997. QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37: 1306–1316.CrossRefGoogle Scholar
  21. Howell, P., D. Marshall & D. Lydiate, 1996. Towards developing intervarietal substitution lines in Brassica napus using markerassisted selection. Genome 39: 348–358.PubMedGoogle Scholar
  22. Hutter, P., 1997. Genetics of hybrid inviability in Drosophila. Adv Genet 36: 157–185.PubMedCrossRefGoogle Scholar
  23. Johnson, W., 1997. Improving the Efficiency of Common Bean (Phaseolus vulgaris L.) Breeding Programs Using Molecular Markers. PhD dissertation, University of California, Davis.Google Scholar
  24. Johnson, W. & P. Gepts, 1999. Segregation for performance in recombinant inbred populations resulting from inter-gene pool crosses of common bean (Phaseolus vulgaris L). Euphytica 106.Google Scholar
  25. Johnson, W., P. Guzmán, D. Mandala, A. Mkandawire, S. Temple, R. Gilbertson & P. Gepts, 1997. Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37: 248–254.CrossRefGoogle Scholar
  26. Koenig, R. & P. Gepts, 1989. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of diversity. Theor Appl Genet 78: 809–817.Google Scholar
  27. Koinange, E.M.K. & P. Gepts, 1992. Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83: 135–139.Google Scholar
  28. Koornneef, M., C. Alonso-Blanco, H. Blankestijn-de Vries, C.J. Hanhart & A.J.M. Peeters, 1998. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885–892.PubMedGoogle Scholar
  29. Kornegay, J., J.W. White & O.O. De la Cruz, 1992. Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62: 171–180.CrossRefGoogle Scholar
  30. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M. Daly, S.E. Lincoln & L. Newburg, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.PubMedCrossRefGoogle Scholar
  31. Leakey, C.L.A., 1988. Genotypic and phenotypic variation in common bean. In: P. Gepts, (Ed.), Genetic Resources of Phaseolus Beans, pp. 245–327. Kluwer, Dordrecht, the Netherlands.Google Scholar
  32. Li, Z., S. Pinson, W. Park, A. Paterson & J. Stansel, 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145: 453–465.PubMedGoogle Scholar
  33. Li, Z., S. Pinson, J. Stansel & W. Park, 1995. Identification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet 91: 374–381.Google Scholar
  34. Li, Z., S. Pinson, J. Stansel & W. Park, 1995. Characterization of quantitative trait loci contributing to field resistance to sheath blight (Rhizoctonia solani) in rice. Theor Appl Genet 91: 382–388.Google Scholar
  35. Long, A., S. Mullaney, L. Reid, J. Fry, C. Langley & T. Mackay, 1995. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139: 1273–1291.PubMedGoogle Scholar
  36. Lynch, M., 1991. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45: 622–629.CrossRefGoogle Scholar
  37. Ma, Y. & F.A. Bliss, 1978. Seed proteins of common bean. Crop Sci 17: 431–437.CrossRefGoogle Scholar
  38. Mayr, E., 1963. Animal Species and Evolution. Columbia Univ. Press, New York.Google Scholar
  39. Menéndez, C., A. Hall & P. Gepts, 1997. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95: 1210–1217.CrossRefGoogle Scholar
  40. Merlot, S. & J. Giraudat, 1997. Genetic analysis of abscisic acid signal transduction. Plant Phys 114: 751–757.CrossRefGoogle Scholar
  41. Muller, H., 1940. Bearing of the Drosophila work on systematics. In: J. Huxley (Ed.), The New Systematics, pp. 185–268. Clarendon, Oxford.Google Scholar
  42. Nodari, R.O., 1992. Towards an integrated linkage map of common bean (Phaseolus vulgaris L.). PhD dissertation, University of California, Davis.Google Scholar
  43. Nodari, R.O., S.M. Tsai, R.L. Gilbertson & P. Gepts, 1993. Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85: 513–520.CrossRefGoogle Scholar
  44. Nodari, R.O., S.M. Tsai, P. Guzmán, R.L. Gilbertson & P. Gepts, 1993. Towards an integrated linkage map of common bean. 3. Mapping genetic factors controlling host-bacteria interactions. Genetics 134: 341–350.PubMedGoogle Scholar
  45. Orr, H., 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139: 1805–1813.PubMedGoogle Scholar
  46. Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln, E.S. Lander & S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181–197.PubMedGoogle Scholar
  47. Patiño, H. & S. Singh, 1989. Visual selection for seed yield in the F2 and F3 generations of nine common bean crosses. Annu Rept Bean Improv Coop 32: 79–89.Google Scholar
  48. Ramsay, L., D. Jennings, E. Bohuon, A. Arthur, D. Lydiate, M. Kearsey & D. Marshall, 1996. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39: 558–567.PubMedGoogle Scholar
  49. SAS, 1988. SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute, Cary, NC.Google Scholar
  50. Shii, C.T., M.C. Mok, S.R. Temple & D.W.S. Mok, 1980. Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L. J Hered 71: 218–222.Google Scholar
  51. Singh, S. & A. Molina, 1996. Inheritance of crippled trifoliolate leaves occurring in interracial crosses of common bean and its relationship with hybrid dwarfism. J Hered 87: 464–469.Google Scholar
  52. Singh, S.P., C. Cajiao, J.A. Gutiérrez, J. García, M.A. Pastor-Corrales & F.J. Morales, 1989. Selection for seed yield in inter-gene pool crosses of common bean. Crop Sci 29: 1126–1131.CrossRefGoogle Scholar
  53. Singh, S.P., P. Gepts & D.G. Debouck, 1991. Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45: 379–396.Google Scholar
  54. Sprecher, S. & M. Khairallah, 1989. Association of male sterility with gene pool recombinants in bean. Annu Rept Bean Improv Coop 32: 56–67.Google Scholar
  55. Tanksley, S., 1993. Mapping polygenes. Annu Rev Genet 27: 205–233.PubMedCrossRefGoogle Scholar
  56. Templeton, A.R., 1981. Mechansisms of speciation - a population genetic approach. Annu Rev Ecol Syst 12: 23–48.CrossRefGoogle Scholar
  57. Tinker, N., 1996. MQTL documentation, version 0.98, mqtl.beta098/mqtl.doc.Google Scholar
  58. Tinker, N. & D. Mather, 1995. Methods for QTL with progeny replicated in multiple environments. J Quant Trait Loci 1: jqtl199515.html.Google Scholar
  59. Tinker, N. & D. Mather, 1995. MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci 1: 8002/jqtl8016r8002.html.Google Scholar
  60. Vallejos, E.C., N.S. Sakiyama & C.D. Chase, 1992. A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131: 733–740.PubMedGoogle Scholar
  61. Vos, P., R. Hogers, M. Bleeker, M., Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J., Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Ac Res 23: 4407–4414.Google Scholar
  62. Welsh, W., W. Bushuk, W. Roca & S.P. Singh, 1995. Characterization of agronomic traits and markers of recombinant inbred lines from intra-and interracial populations of Phaseolus vulgaris L. Theor Appl Genet 91: 169–177.CrossRefGoogle Scholar
  63. Whitlock, M., P. Phillips, F. Moore & S. Tonsor, 1995. Multiple fitness peaks and epistasis. Ann Rev Ecol Syst 26: 601–629.CrossRefGoogle Scholar
  64. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Ac Res 18: 6531–6535.Google Scholar
  65. Wright, S., 1968. Evolution and the Genetics of Populations. University of Chicago Press, Chicago.Google Scholar
  66. Yu, S., J. Li, C. Xu, Y. Tan, Y., Gao, X. Li, Q. Zhang & M. Saghai Maroof, 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94: 9226–9231.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • William C. Johnson
    • 1
  • Paul Gepts
    • 1
  1. 1.Department of Agronomy and Range ScienceUniversity of CaliforniaDavisU.S.A

Personalised recommendations