Advertisement

Journal of Atmospheric Chemistry

, Volume 42, Issue 1, pp 413–441 | Cite as

Actinic Radiation and Photolysis Processes in the Lower Troposphere: Effect of Clouds and Aerosols

  • W. Junkermann
  • C. Brühl
  • D. Perner
  • E. Eckstein
  • T. Trautmann
  • B. Früh
  • R. Dlugi
  • T. Gori
  • A. Ruggaber
  • J. Reuder
  • M. Zelger
  • A. Hofzumahaus
  • A. Kraus
  • F. Rohrer
  • D. Brüning
  • G. Moortgat
  • A. Horowitz
  • J. Tadić
Article

Abstract

Within the German Tropospheric Research Program (TFS) a series of projects were performed focussing on aspects of radiation transfer and the effects of UV-radiation on air chemistry. The individual projects covered laboratory investigations, instrument development for photolysis processes as well as field studies of actinic radiation and comparison to model calculations. One and three-dimensional models were tested against field campaign data. The results confirm the improvement of measurement technology achieved through deployment of new techniques like spectroradiometry that offer a wider range of investigations than was previously attainable using chemical actinometry or fixed wavelength filter radiometry. Reasonable agreement was also found between measurements and models for a few selected and well defined cloudy conditions. On the other hand, using simple stratiform geometry models yielded significant deviations between measurement and model in both directions particularly in the case of high zenith angles and with high aerosol load. Further tools both for experimental investigations and for model calculations were developed within the framework of the Troposphere Research Program (TFS) and deficiencies were identified demanding further investigations when broken clouds and more complex cloud layers prevail.

actinic radiation UV-radiation photolysis processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic photochemical and heterogeneous data for atmospheric chemistry: Supplement V, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data 26, 521–1011Google Scholar
  2. Bahe, F. C., Marx, W. N., Schurath, U., and Röth, E. P., 1979: Determination of the absolute photolysis rate of ozone by sunlight, O3 + hv → O(1D) + O2 ( 1 Δg) at ground level, Atmos. Environ. 13, 1515–1522.Google Scholar
  3. Bahe, F. C., Marx, W. N., Schurath, U., and Becker, K. H., 1980: The frequency of NO2 photolysis at ground level, as recorded by a continuous actinometer, Atmos. Environ. 14, 711–718.Google Scholar
  4. Bais, A. F., Zerefos, C. S., Melety, I., Ziomas, C., and Tourpaly, K., 1993: Spectral measurements of solar UV-B radiation and its relation to total ozone, SO2 and clouds, J. Geophys. Res. 48, D3, 199–204.Google Scholar
  5. Bauer, D., D'Ottone, L., and Hynes, A.J., 2000: O(1D) quantum yields from O3 photolysis in the near UV region between 305 and 375 nm, J. Phys. Chem. 2, 1421–1424.Google Scholar
  6. Cahalan, R. F., Ridgway, W., Wiscombe, W. J., and Bell, T. L., 1994a: The albedo of fractral stratocumulus clouds, J. Atmos. Sci. 51, 2434–2455Google Scholar
  7. Cahalan, R. F., Ridgway, W., and Wiscombe, W. J., 1994b: Independent pixel and Monte Carlo estimates of stratocumulus albedo, J. Atmos. Sci. 51, 3776–3790Google Scholar
  8. Cantrell, C. A., Davidson, J. A., McDaniel, A. H., Shetter, R. and Calvert, J. G., 1991: Temperature dependent formaldehyde cross sections in the near ultraviolet spectra region, J. Phys. Chem. 94, 3902–3908.Google Scholar
  9. Crawford, J., David, G., Chen, G., Shetter, R., Müller, M., Barrick, J., and Olson, J., 1999: An assessment of cloud effects on photolysis rate coefficients: Comparison of experimental and theoretical values, J. Geophys. Res. 104, 5725–5734.Google Scholar
  10. Davidson, J. A., Cantrell, C. A., McDaniel, A. H., Shetter, R. E., Madronich, S., and Calvert, J. G., 1988: Visible-ultraviolet absorption cross sections for NO2 as a function of temperature, J. Geophys. Res. 93, 7105–7112.Google Scholar
  11. Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980: Theoretical estimates of actinic (spherical integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere. Adv. Environ. Sci. Tech. 10, 369–459.Google Scholar
  12. Dickerson, R. R., Stedman, D. H., and Delany, A. C., 1982: Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, J. Geophys. Res. 87, 4933–4946.Google Scholar
  13. Dlugi, R., Gori, T., and Zelger, M., 2001: Enhancement factors for photodissociation frequencies near ground below broken cloud fields. Submitted to J. Geophys. Res. Google Scholar
  14. Degünther, M. and Meerkötter, R., 2000: Influence of inhomogeneous surface albedo on UV irradiance: Effect of a stratus cloud, J. Geophys. Res. 105, 22755–22761Google Scholar
  15. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 12', JPL Publication 97-4, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.Google Scholar
  16. Evans, K. F., 1998: The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer, J. Atmos. Sci. 55, 429–446.Google Scholar
  17. Früh, B., Trautmann, T., Wendisch, M., and Keil, A., 2000a: Comparison of observed and simulated NO2 photodissociation rates in boundary layer clouds using detailed microphysical model input, J. Geophys. Res. 105, 9843–9857Google Scholar
  18. Früh, B., Trautmann, T., and Wendisch, M., 2000b: Measurement based J(NO2) sensitivity in a cloudless atmosphere under low aerosol loading and high solar zenith angle conditions, Atmos. Environ. 34, 5249–5254.Google Scholar
  19. Geogdzhaev, I. V., Kondranin, T. V., Chubarova, N. E., and Rublev, A. N., 1996: Comparison of UV measurements and modeling under broken cloudiness, in B. Smith and K. Stamnes (eds), IRS'96: Current Problems in Atmospheric Radiation, pp. 965–868.Google Scholar
  20. Gierczak, T., Burkholder, J. B., Talukdar, R. K., Mellouki, A., Barone S. B., and Ravishankara, A. R., 1997: Atmospheric fate of methylvinylketone and methacrolein, J. Photochem. Photobiol. A, 110, 1–10.Google Scholar
  21. Gori, T., 1997: Bestimmung der Photolysefrequenz mit Hilfe eines Photoelektrischen Detektors, Diploma Thesis (in German), Meteorologisches Institut, Universität München, Germany.Google Scholar
  22. Halthore, R. N. and Schwartz, S. E., 2000: Comparison of model-estimated and measured diffuse downward irradiance at surface in cloud-free skies, J. Geophys. Res. 105, 20165–20177.Google Scholar
  23. Harder, J. W., Brault, J. W., Johnston, P. V., and Mount, G. H., 1997: Temperature dependent NO2 cross sections at high spectral resolution, J. Geophys. Res. 102, 3861–3879.Google Scholar
  24. Hass, H. and Ruggaber, A., 1995: Comparison of two algorithms for calculating photolysis frequencies including the effects of clouds. Meteorol. Atmos. Phys. 57, 87–100.Google Scholar
  25. Hofzumahaus, A., Kraus, A., and Müller, M., 1999: Solar actinic flux spectroradiometry: A technique for measuring photolysis frequencies in the atmosphere, Applied Optics 38, 4443–4460.Google Scholar
  26. Hofzumahaus, A., Kraus, A., Kylling, A., and Zerefos, C. S., 2001: Solar actinic radiation (280– 420 nm) in the cloud free troposphere between ground and 12 km altitude: Measurements and model results, J. Geophys. Res., in press.Google Scholar
  27. Josefsson, W. and Landelius, T., 2000: Effects on clouds on UV irradiance: As estimated from cloud amount, cloud type, precipitation, global radiation and sunshine duration, J. Geophys. Res. 105, 4927–4935Google Scholar
  28. Junkermann, W., Platt, U., and Volz, A., 1989: A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules, J. Atm. Chem 8, 203–227.Google Scholar
  29. Junkermann, W., 1994: Measurements of the J (O1D) actinic flux within and above stratiform clouds and above snow surfaces, Geophys. Res. Lett. 21, 793–796.Google Scholar
  30. Junkermann, W., 2001: Investigations using an ultralight aircraft as platform for radiation transfer studies in stratiform aerosol layers and broken cloud conditions, J. Atm. and Ocean. Tech., in press.Google Scholar
  31. Kasten, F. and Czeplak, G., 1980: Solar and terrestrial radiation dependent on the amount and type of cloud, Sol. Energy 24, 177–189.Google Scholar
  32. Kraus, A. and Hofzumahaus, A., 1998: Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, CH3CHO, H2O2 and HONO by UV spectroradiometry, J. Atmos. Chem. 31, 161–180.Google Scholar
  33. Kraus, A., Rohrer, F., and Hofzumahaus, A., 2000: Intercomparison of NO2 photolysis frequency measurements by actinic flux spectroradiometry and chemical actinometry during JCOM97, Geophys. Res. Lett. 27, 1115–1118.Google Scholar
  34. Koch, S. and Moortgat, G. K., 1998: Photochemistry of methylglyoxal, J. Phys. Chem. 102, 9142–9153.Google Scholar
  35. Lantz, K. O., Shetter, R. E., Cantrell, C. A., Flocke, S. J., Calvert, J. G., and Madronich, S., 1996: Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2, J. Geophys. Res. 101, 14613–14629.Google Scholar
  36. Liou, K. N., Fu, Q., and Ackermann, T., 1988: A simple formulation of the delta-four stream approximation for radiative transfer parametrisation, J. Atmos. Sci. 45, 1940–1947.Google Scholar
  37. Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere: Oxford Monographs on Geology and Geophysics, No. 20, Oxford University Press, Oxford.Google Scholar
  38. Los, A., v. Weele, M., and Duynkerke, P.G., 1997: Actinic fluxes in broken cloud fields, J. Geophys. Res. 102, 4257–4266.Google Scholar
  39. Madronich, S., 1987: Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 9740–9752.Google Scholar
  40. Magneron, I., Horowitz, A., Tadic, J., Wirtz, K., Pons M., and Moortgat, G. K., 2001: Photolytic studies on glyoxal and glycolaldehyde, Proceedings of the Eurotrac-2 Symposium ‘Transport and Chemical Transformation in the Troposphere’, 27–31 March 2000, Garmisch-Partenkirchen, in press.Google Scholar
  41. Mayer, B., Fischer, C. A., and Madronich, S., 1998: Estimation of surface actinic flux from satellite (TOMS) ozone and cloud reflectivity measurements, Geophys Res. Lett. 25, 4321–4324.Google Scholar
  42. Mazin, I. P. and Khargian, A. K., 1989: Handbook of clouds and cloudy atmosphere, M. Hydrometeoizdat (in Russian).Google Scholar
  43. McClatchey, R. A., Fenn, R.W., Selby, J. E. A., Volz, F. E., and Garing. J.S., 1971: Optical properties of the atmosphere, AFCRL-71-0279, Environmental Research Papers, 354.Google Scholar
  44. Meller, R. and Moortgat, G. K., 2000: Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K, J. Geophys. Res. 105: 7089–7101.Google Scholar
  45. Meller, R., Raber, W., Crowley, J. N., Jenkin M. E., and Moortgat, G. K., 1991: The UV-visible absorption spectrum of methylglyoxal by conventional spectroscopy and modulated photolysis, J. Photochem. Photobiol. A, Chem. 62, 163–171.Google Scholar
  46. Mérienne, M. F., Jenouvrier, A., and Coquart, B., 1995: The NO2 absorption spectrum. 1. Absorption cross-sections at ambient temperature in the 300–500 nm region, J. Atmos. Chem. 20, 281–297.Google Scholar
  47. Mims, F. M. and Frederik, J. E., 1994: Cumulus clouds and UV-B, Nature 371, 291.Google Scholar
  48. Moortgat, G. K., 2000: 'Evaluation of radical sources in atmopsheric chemistry through chamber and laboratory studies, ‘RADICAL’, Final Report ENV4-CT97-0419.Google Scholar
  49. Müller, M., Kraus, A., and Hofzumahaus, A., 1995: O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV-radiation: Comparison with chemical actinometer measurements, Geophys. Res. Lett. 22, 679–682.Google Scholar
  50. Nack, M. L. and Green, A. E. S., 1974: Influence of clouds, haze and smog on the middle ultraviolet reaching the ground, Appl. Opt. 13, 2405–2415.Google Scholar
  51. O'Hirok, W. and Gautier, C., 1998: A three dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. part 1: Spatial effects, J. Atm. Sci. 55, 2162–2179.Google Scholar
  52. O'Hirok, W. and Gautier, C., 1998: A three dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects, J. Atm. Sci. 55, 3065–3076.Google Scholar
  53. Pruppacher, H. R., and Klett, J. D., 1997: Microphysics of Clouds and Precipitation, 2nd edn, Kluwer Academic Publishers, Norwell, Mass.Google Scholar
  54. Redemann, J., Turco, R. P., Liou, K. N., Russell, P. B., Bergstrom, R. W., Schmid, B., Livingston, J. M., Hobbs, P. V., Hartley, W. S., Ismail, S., Ferrare, R. A., and Browell, E. V., 2000: Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX, J. Geoph. Res. 105, 9949–9970.Google Scholar
  55. Reuder, J., Gori, T., Kins, L., and Dlugi, R., 1996a: Measurements of photolysis frequencies of nitrogen dioxide and ozone: The influence of atmospheric parameters with special emphasis on cloud effects, in B. Smith and K. Stamnes (eds) IRS'96: Current Problems in Atmospheric Radiation, pp. 894–897.Google Scholar
  56. Reuder. J, Gori, T., Kins, L., and Dlugi, R., 1996b: Determination of photolysis frequencies of ozone and nitrogen dioxide during SANA2: The influence of tropospheric aerosol particles. Meteorol. Zeitschrift, N.F. 5, 234–244.Google Scholar
  57. Reuder, J., 1999: Untersuchungen zur Variabilität von Photolysefrequencen. Dissertation Thesis (in German), Fakultät Umweltwissenschaften und Verfahrenstechnik, Aktuelle Reihe 4/99, Technical University (BTU), Cottbus, Germany.Google Scholar
  58. Ruggaber, A., Dlugi, R., and Nakajima, T., 1994: Modeling of radiation quantities and photolysis frequencies in the troposphere. J. Atmos. Chem. 18, 171–210.Google Scholar
  59. Shetter, R. and Müller, M., 1999: Photolysis frequency measurements using actinic flux spectroradiometry during PEM-tropics Mission: Instrumentation description and some results, J. Geophys. Res. 104, 5647–5661.Google Scholar
  60. Shettle, E. P. and Fenn, R. W., 1979: Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties. AFGL-TR-79-0214, Environmental Research Papers, 676Google Scholar
  61. Schulze, R. W., 1970: Strahlenklima der Erde. Wissenschaftliche Forschungsberichte, Band 72 (in German), Steinkopf Verlag, Darmstadt, Germany.Google Scholar
  62. Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt. 27, 2502–2509.Google Scholar
  63. Talukdar, R. K., Longfellow, C. A., Gilles, M. K., and Ravishankara, A. R., 1998: Quantum yields of O(1D) in the photolyis of ozone between 289 and 329 nm as a function of temperature, Geophys. Res. Lett. 25, 143–146.Google Scholar
  64. Trautmann, T., Podgorny, I., Landgraf, J., and Crutzen, P. J., 1999: Actinic fluxes and photodissociation coefficients in cloud fields embedded in realistic atmospheres, J. Geophys. Res. 104, 30173–30192.Google Scholar
  65. Vila-Guerau de Arellano, J., Duynkerke, P.G. and Van Weele, M., 1994: Tethered Balloon Measurements of actinic flux in a cloud capped marine boundary layer, J. Geophys. Res. 99, 3699–3705.Google Scholar
  66. Weihs, P., Webb, A. R., Hutchinson, S. J., and Middleton, G. W., 2000: Measurements of the diffuse UV-sky radiance during broken cloud conditions. J. Geophys. Res. 105, 4937–4944.Google Scholar
  67. Wendisch, M. and Keil, A., 1999: Discrepancies between measured and modeled solar and UV radiation within polluted planetary boundary layer clouds, J. Geophys. Res. 104, 27373–27385.Google Scholar
  68. World Meteorological Organization (WMO), 1985: Atmospheric Ozone 1985, report 16, Global ozone research and monitoring project, Geneva, Switzerland.Google Scholar
  69. Woods, T. N., Prinz, D. K., Rottmann, G. J., Kondon, J., Crane, P. C., Cebula, R. P., Hilsenrath, E., Brueckner, G. E., Andrews, M. D., White, O. R., Van Hoosier, M. E., Floyd, L. E., Herring, L. C., Knapp, B. G., Pankratz, C. K., and Reiser, P. A., 1996: Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res. 101, 9541–9569.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • W. Junkermann
    • 1
  • C. Brühl
    • 2
  • D. Perner
    • 2
  • E. Eckstein
    • 2
  • T. Trautmann
    • 3
  • B. Früh
    • 3
  • R. Dlugi
    • 4
  • T. Gori
    • 4
  • A. Ruggaber
    • 4
  • J. Reuder
    • 4
  • M. Zelger
    • 4
  • A. Hofzumahaus
    • 5
  • A. Kraus
    • 5
  • F. Rohrer
    • 5
  • D. Brüning
    • 5
  • G. Moortgat
    • 2
  • A. Horowitz
    • 2
  • J. Tadić
    • 2
  1. 1.Fraunhofer Institut für Atmosphärische UmweltforschungGarmisch-PartenkirchenGermany
  2. 2.Max Planck-Institut für ChemieMainzGermany
  3. 3.Institut für Physik der AtmosphäreUniversität MainzGermany
  4. 4.Wissenschaftliche Arbeitsgruppe Atmosphärische ProzesseMünchenGermany
  5. 5.Institut für Chemie und Dynamik der GeosphäreForschungszentrum JülichGermany

Personalised recommendations