Journal of Mammary Gland Biology and Neoplasia

, Volume 7, Issue 1, pp 49–66

Hormonal Regulation of Mammary Differentiation and Milk Secretion

  • Margaret C. Neville
  • Thomas B. McFadden
  • Isabel Forsyth
Article

Abstract

The endocrine system coordinates development of the mammary gland with reproductive development and the demand of the offspring for milk. Three categories of hormones are involved. The levels of the reproductive hormones, estrogen, progesterone, placental lactogen, prolactin, and oxytocin, change during reproductive development or function and act directly on the mammary gland to bring about developmental changes or coordinate milk delivery to the offspring. Metabolic hormones, whose main role is to regulate metabolic responses to nutrient intake or stress, often have direct effects on the mammary gland as well. The important hormones in this regard are growth hormone, corticosteroids, thyroid hormone, and insulin. A third category of hormones has recently been recognized, mammary hormones. It currently includes growth hormone, prolactin, PTHrP, and leptin. Because a full-term pregnancy in early life is associated with a reduction in breast carcinogenesis, an understanding of the mechanisms by which these hormones bring about secretory differentiation may offer clues to the prevention of breast cancer.

lactogenesis endocrine regulation prolactin placental lactogen progesterone breast cancer risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. C. Hovey, J. Trott, and B. K. Vonderhaar (2002). Establishing a framework for the functional mammary gland: From endocrinology to morphology. J.Mammary Gland Biol.Neoplasia 7:17–38.PubMedGoogle Scholar
  2. 2.
    A. T. Cowie, I. A. Forsyth, and I. C. Hart (1980). Hormonalcontrol of lactation. Monogr.Endocrinol. 1–275.Google Scholar
  3. 3.
    Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol.Rev.60:1049–1106.PubMedGoogle Scholar
  4. 4.
    J. A. Mol, I. Lantinga-van Leeuwen, E. van Garderen, and A. Rijnberk (2000). Progestin-induced mammary growth hormone(GH) production. Adv.Exp.Med.Biol.480:71–76.PubMedGoogle Scholar
  5. 5.
    K. Lippuner, H. J. Zehnder, J. P. Casez, R. Takkinen, and P. Jaeger (1996). PTH-related protein is released intothe mother's bloodstream during lactation: Evidence for beneficial effects on maternal calcium-phosphate metabolism. J.Bone Miner.Res.11:1394–1399.PubMedGoogle Scholar
  6. 6.
    B. Woodside, A. Abizaid, and C. Walker (2000). Changes in leptin levels during lactation: Implications for lactational hyperphagia and anovulation. Horm.Behav.37:353–365.PubMedGoogle Scholar
  7. 7.
    C. V. Clevenger and T. L. Plank (1997). Prolactin as an au-tocrine/paracrine factor in breast tissue. J.Mammary GlandBiol.Neoplasia 2:59–68.Google Scholar
  8. 8.
    P. Ramamoorthy, R. Sticca, T. E. Wagner, and W. Y. Chen(2001). In vitro studies of a prolactin antagonist, hPRL-G129Rin human breast cancer cells. Int.J.Oncol.18:25–32.PubMedGoogle Scholar
  9. 9.
    B. K. Vonderhaar (1999). Prolactin involvement in breastcancer. Endocr.Relat.Cancer 6:389–404.PubMedGoogle Scholar
  10. 10.
    J. L. Kelsey and M. D. Gammon (1990). Epidemiology ofbreast cancer. Epidemiol.Rev.12:228–249.PubMedGoogle Scholar
  11. 11.
    D. Medina and G. H. Smith (1999). Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J.Natl.Cancer Inst.91:967–969.PubMedGoogle Scholar
  12. 12.
    G. Thordarson, K. Van Horn, R. C. Guzman, S. Nandi, and F. Talamantes (2001). Parous rats regain high susceptibility to chemically induced mammary cancer after treatment with various mammotropic hormones. Carcinogenesis 22:1027–1033.PubMedGoogle Scholar
  13. 13.
    L. Sivaraman, S. G. Hilsenbeck, L. Zhong, J. Gay, O. M. Conneely, D. Medina, and B. W. O'Malley (2001). Early exposure of the rat mammary gland to estrogen and progesterone blocks co-localization of estrogen receptor expression and proliferation. J.Endocrinol.171:75–83.PubMedGoogle Scholar
  14. 14.
    C. Brisken (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. J.MammaryGland Biol.Neoplasia 7:49–66.Google Scholar
  15. 15.
    P. E. Hartmann (1973). Changes in the composition and yield of the mammary secretion of cows during the initiation of lactation. J.Endocr.59:231–247.PubMedGoogle Scholar
  16. 16.
    G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.PubMedGoogle Scholar
  17. 17.
    R. H. Martin, M.R. Glass, C. Chapman, G. D. Wilson, and K. L. Woods (1980). Human alpha-lactalbumin and hormonal factorsin pregnancy and lactation. Clin.Endocrinol.13:223–230.Google Scholar
  18. 18.
    M. C. Neville, J. Morton, and S. Umemora (2001). Lactogenesis: The transition from pregnancy to lactation. Pediatr.Clin.North Am.48:35–52.PubMedGoogle Scholar
  19. 19.
    H. H. Traurig (1967). Cell proliferation in the mammary gland during late pregnancy and lactation. Anat.Rec.157:489–504.Google Scholar
  20. 20.
    N. Normanno and F. Ciardiello (1997). EGF-related peptidesin the pathophysiology of the mammary gland. J.MammaryGland Biol.Neoplasia 2:143–151.Google Scholar
  21. 21.
    K. L. Troyer and D. C. Lee (2001). Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J.Mammary Gland Biol.Neoplasia 6:7–21.PubMedGoogle Scholar
  22. 22.
    C. W. Daniel, S. Robinson, and G. B. Silberstein (1996). Therole of TGF-¯ in patterning and growth of the mammary ductal tree. J.Mammary Gland Biol.Neoplasia 1:331–341.PubMedGoogle Scholar
  23. 23.
    J. W. Pollard (2001). Tumour-stromal interactions: Transforming growth factor-beta isoforms and hepatocyte growthfactor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res.3:230–237.PubMedGoogle Scholar
  24. 24.
    T. L. Wood, M. M. Richert, M. A. Stull, and M. A. Allar (2000). The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammaryglands. J.Mammary Gland Biol.Neoplasia 5:31–42.PubMedGoogle Scholar
  25. 25.
    T. B. McFadden, R. M. Akers, and G. W. Kazmer (1987). Alpha-lactalbumin in bovine serum: Relationships with ud-derdevelopment and function. J.Dairy Sci.70:259–264.PubMedGoogle Scholar
  26. 26.
    B. K. Vonderhaar and S. E. Ziska (1989). Hormonal regulationof milk protein gene expression. Ann.Rev.Physiol.51:641–652.Google Scholar
  27. 27.
    R. P. Deis and C. Delouis (1983). Lactogenesis induced byovariectomy in pregnant rats and its regulation by oestrogenand progesterone. J.Steroid Biochem.18:687–690.PubMedGoogle Scholar
  28. 28.
    Y. Mizoguchi, J. Y. Kim, T. Sasaki, T. Hama, M. Sasaki, J. Enami, and S. Sakai (1996). Acute expression of the PRLreceptor gene after ovariectomy in midpregnant mouse mam-marygland. Endocrine.J.43:537–544.Google Scholar
  29. 29.
    Y. Mizoguchi, H. Yamaguchi, F. Aoki, J. Enami, and S. Sakai(1997). Corticosterone is required for the prolactin receptorgene expression in the late pregnant mouse mammary gland. Mol.Cell Endocrinol.132:177–183.PubMedGoogle Scholar
  30. 30.
    S. Nishikawa, R. C. Moore, N. Nonomura, and T. Oka (1994). Progesterone and EGF inhibit mouse mammary gland pro-lactinreceptor and ¯-casein gene expression. Am.J.Physiol.267:C1467–C1472.PubMedGoogle Scholar
  31. 31.
    D. D. Nguyen, A. F. Parlow, and M. C. Neville (2001). Hor-monalregulation of tight junction closure in the mouse mam-maryepithelium during the transition from pregnancy to lactation. J.Endocrinol.170:347–356.PubMedGoogle Scholar
  32. 32.
    M. E. Freeman, B. Kanyicska, A. Lerant, and G. Nagy (2000). Prolactin: Structure, function and regulation of secretion. Physiol.Rev.80:1523–1631.PubMedGoogle Scholar
  33. 33.
    Z. B. Andrews, I. C. Kokay, and D. R. Grattan (2001). Dissociation of prolactin secretion from tuberoinfundibulardopamine activity in late pregnant rats. Endocrinology 142:2719–2724.PubMedGoogle Scholar
  34. 34.
    D. J. Mellor, D. J. Flint, R. G. Vernon, and I. A. Forsyth (1987). Relationships between plasma hormone concentrations, udder development and the production of early mammary secretions in twin-bearing ewes on different planes of nutrition. Quart.J.Exp.Physiol.72:345–356.Google Scholar
  35. 35.
    R. De Hertogh, K. Thomas, Y. Bietlot, I. Vanderheyden, and J. Ferin (1975). Plasma levels of unconjugated estrone, estra-dioland estriol and of HCS throughout pregnancy in normalwomen. J.Clin.Endocrinol.Metab.40:93–101.PubMedGoogle Scholar
  36. 36.
    D. Tulchinsky, C. J. Hobel, E. Yeager, and J. R. Marshall(1972). Plasma estrone, estradiol, progesterone and 17-hydroxyprogesterone in human pregnancy. 1. Normal pregnancy. Am.J.Obstet.Gynecol.112:1095–1100.PubMedGoogle Scholar
  37. 37.
    L. A. Rigg, A. Lein, and S. S. Yen (1977). Pattern of increasein circulating prolactin levels during human gestation. Am.J.Obstet.Gynecol.129:454–456.PubMedGoogle Scholar
  38. 38.
    B. R. Carr, C. R. Parker Jr., J. D. Madden, P. C. MacDonald, and J. C. Porter (1981). Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am.J.Obstet.Gynecol.139:416–422.PubMedGoogle Scholar
  39. 39.
    M. C. Neville (1983). Regulation of mammary developmentand lactation. In M. C. Neville and M. R. Neifert (eds.), Lactation: Physiology, Nutrition and Breast-feeding, PlenumPress, New York, pp. 103–140.Google Scholar
  40. 40.
    R. H. Martin and R. E. Oakey (1982). The role of antena-taloestrogen in post-partum human lactogenesis: Evidencefrom oestrogen-deficient pregnancies. Clin.Endocrinol.17:403–408.Google Scholar
  41. 41.
    J. K. Kulski, P. E. Hartmann, J. D. Martin, and M. Smith(1978). Effects of bromocriptine mesylate on the composi-tionof the mammary secretion in non-breast-feeding women. Obstet.Gynecol.52:38–42.PubMedGoogle Scholar
  42. 42.
    I. A. Forsyth and P. D. Lee (1993). Bromocriptine treatment ofperiparturient goats: Long-term suppression of prolactin andlack of effect on lactation. J.Dairy Res.60:307–317.PubMedGoogle Scholar
  43. 43.
    D. Schams (1972). Prolactin levels in bovine blood, influenced by milking manipulation, genital stimulation and oxytocin administration with specific consideration of the seasonal variations. Acta Endocrinol.71:684–696.PubMedGoogle Scholar
  44. 44.
    C. C. K. Tay, A. F. Glasier, and A. S. McNeilly (1996). Twentyfour hour patterns of prolactin secretion during lactation andthe relationship to suckling and the resumption of fertility in breast-feeding women. Hum.Reprod.11:950–955.PubMedGoogle Scholar
  45. 45.
    D. J. Flint and R. G. Vernon (1998). Effects of food restric-tionon the responses of the mammary gland and adiposetissue to prolactin and growth hormone in the lactating rat. J.Endocrinol.156:299–305.PubMedGoogle Scholar
  46. 46.
    L. J. Benedek-Jaszmann and V. Sternthal (1976). Late suppres-sionof lactation with bromocryptine. Practitioner 216:450.PubMedGoogle Scholar
  47. 47.
    H. Nagasawa and R. Yanai (1978). Mammary gland pro-lactinreceptor and pituitary prolactin secretion in lactatingmice with different lactational performance. Acta Endocrinol.88:94–98.PubMedGoogle Scholar
  48. 48.
    D. J. Flint and C. H. Knight (1997). Interactions of prolactinand growth hormone in the regulation of mamary gland function and epithelial cell survival. J.Mammary Gland Biol.Neoplasia 2:41–48.PubMedGoogle Scholar
  49. 49.
    K. L. Schwertfeger, M. M. Richer, and S. M. Anderson (2001). Mammary gland involution is delayed by activated Akt intransgenic mice. Mol.Endocrinol.15:867–881.PubMedGoogle Scholar
  50. 50.
    C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, and P. A. Kelly(1998). Prolactin (PRL) and its receptor: Actions, signal trans-duction pathways and phenotypes observed in PRL receptorknockout mice. Endocr.Rev.19:225–268.PubMedGoogle Scholar
  51. 51.
    S. Cassy, M. Charlier, L. Belair, M. Guillomot, G. Charron, B. Bloch, and J. Djiane (1998). Developmental expression andlocalization of the prolactin receptor (PRL-R) gene in ewemammary gland during pregnancy and lactation: Estimationof the ratio of the two forms of PRL-R messenger ribonucleicacid. Biol.Reprod.58:1290–1296.PubMedGoogle Scholar
  52. 52.
    Z. Z. Hu, J. Meng, and M. L. Dufau (2001). Isolation andcharacterization of two novel forms of the human prolactinreceptor generated by alternative splicing of a newly identifiedexon 11. J.Biol.Chem.276:41086–41094.PubMedGoogle Scholar
  53. 53.
    C. Brisken, S. Kaur, T. E. Chavarria, N. Binart, R. L. Sutherland, R. A. Weinberg, P. A. Kelly, and C. J. Ormandy(1999). Prolactin controls mammary gland developmentvia direct and indirect mechanisms. Dev.Biol.210:96–106.PubMedGoogle Scholar
  54. 54.
    M. I. Gallego, N. Binart, G. W. Robinson, R. Okagaki, K. T. Coschigano, J. Perry, J. J. Kopchick, T. Oka, P. A. Kelly, and L. Hennighausen (2001). Prolactin, growth hormone, and epi-dermalgrowth factor activate Stat5 in different compartmentsof mammary tissue and exert different and overlapping developmental effects. Dev.Biol.229:163–175.PubMedGoogle Scholar
  55. 55.
    X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a ismandatory for adult mammary gland development and lactogenesis. Genes Devel.11:179–186.PubMedGoogle Scholar
  56. 56.
    M. N. Emane, C. Delouis, P. A. Kelly, and J. Djiane (1986). Evolution of prolactin and placental lactogen receptorsin ewes during pregnancy and lactation. Endocrinology 118:695–700.PubMedGoogle Scholar
  57. 57.
    I. A. Forsyth (1994). Comparative aspects of placental lactogens: Structure and function. Exp.Clin.Endocrinol.102:244–251.PubMedGoogle Scholar
  58. 58.
    F. Talamantes and L. Ogren (1988). The placenta as an en-docrineorgan: Polypeptides. In E. Knobil and J. D. Neill (eds.),The Physiology of Reproduction, Raven Press, New York, pp. 2093–2144.Google Scholar
  59. 59.
    P. Gaede, D. Trolle, and H. Pedersen (1978). Extremely lowplacental lactogen hormone (hPL) values in an otherwise un-eventlfulpregnancy preceding delivery of a normal baby. ActaObstet.Gynecol.Scand.57:203–209.Google Scholar
  60. 60.
    P. V. Nielson, H. Pederson, and E. Kampmann (1979). Ab-senceof placental lactogen in an otherwise uneventful pregnancy. Am.J.Obstet.Gynecol.135:322–330.PubMedGoogle Scholar
  61. 61.
    A. Herman, C. Bignon, N. Daniel, J. Grosclaude, A. Gertler,and J. Djiane (2000). Functional heterodimerization of pro-lactinand growth hormone receptors by ovine placental lactogen. J.Biol.Chem.275:6295–6301.PubMedGoogle Scholar
  62. 62.
    R. W. Caron, G. A. Jahn, and R. P. Deis (1994). Lactogenicactions of different growth hormone preparations in pregnant and lactating rats. J.Endocrinol.142:535–545.PubMedGoogle Scholar
  63. 63.
    Y. N. Ilkbahar, G. Thordarson, I. G. Camarillo, and F. Talamantes (1999). Differential expression of the growthhormone receptor and growth hormone-binding protein inepithelia and stroma of the mouse mammary gland at variousphysiological stages. J.Endocrinol.161:77–87.PubMedGoogle Scholar
  64. 64.
    E. L. Gregoraszczuk, T. Milewicz, J. Kolodziejczyk, J. Krzysiek, A. Basta, K. Sztefko, S. Kurek, and J. Stachura(2001). Progesterone-induced secretion of growth hormone, insulin-like growth factor I and prolactin by human breastcancer explants. Gynecol.Endocrinol.15:251–258.PubMedGoogle Scholar
  65. 65.
    Y. Zhou, B. C. Xu, H. G. Maheshwari, L. He, M. Reed, M. Lozykowski, S. Okada, L. Cataldo, K. Coschigamo, T. E. Wagner, G. Baumann, and J. J. Kopchick (1997). Amammalianmodel for Laron syndrome produced by targeted disruptionof the mouse growth hormone receptor/binding protein gene(the Laron mouse). Proc.Natl.Acad.Sci.U.S.A.94:13215–13220.PubMedGoogle Scholar
  66. 66.
    D. L. Rimoin, G. B. Holzman, T. J. Merimee, D. Rabinowitz, A. C. Barnes, J. E. Tyson, and V. A. McKusick (1968). Lac-tationin the absence of human growth hormone. J.Clin.Endocrinol.Metab.28:1183–1188.PubMedGoogle Scholar
  67. 67.
    A. L. Rosenbloom, J. Guevara-Aguirre, R. G. Rosenfeld, and U. Francke (1999). Growth hormone receptor deficiency in Ecuador. J.Clin.Endo.Metab.84:4436–4443.Google Scholar
  68. 68.
    D. E. Bauman and R. G. Vernon (1993). Effects of exoge-nousbovine somatotropin on lactation. Annu.Rev.Nutr.13:437–461.PubMedGoogle Scholar
  69. 69.
    D. J. Flint and M. Gardner (1994). Evidence that growthhormone stimulates milk synthesis by direct action on themammary gland and that prolactin exerts effects on milk se-cretionby maintenance of mammary deoxyribonucleic acidcontent and tight junction status. Endocrinology 135:1119–1124.PubMedGoogle Scholar
  70. 70.
    K. M. Darcy, S. F. Shoemaker, P.-P. H. Lee, B. A. Ganis, and M. M. Ip (1995). Hydrocortisone and progesterone regulation of the proliferation, morphogenesis, and functional differentiation of normal rat mammary epithelial cells in three dimensional primary culture. J.Cell.Physiol.163:365–379.PubMedGoogle Scholar
  71. 71.
    S. Z. Haslam and G. Shyamala (1980). Progesterone receptorsin normal mammary gland: Receptor modulations in relation to differentiation. J.Cell Biol.86:730–737.PubMedGoogle Scholar
  72. 72.
    M. C. Neville and C. T. Walsh (1996). Effects of drugs on milk secretion and composition. In P. N. Bennett (ed.), Drugs andHuman Lactation, Elsevier, Amsterdam, pp. 15–45.Google Scholar
  73. 73.
    F. Athie, K. C. Bachman, H. H. Head, M. J. Hayen, and C. J. Wilcox (1996). Estrogen administered at final milk removalaccelerates involution of bovine mammary gland. J.Dairy Sci.79:220–226.PubMedGoogle Scholar
  74. 74.
    H. S. Jin, S. Umemora, T. Iwasaka, and R. Y. Osamura (2000). Alterations of myoepithelial cells in the rat mammary glandduring pregnancy, lactation and involution, and after estradioltreatment. Pathol.Int.50:384–391.PubMedGoogle Scholar
  75. 75.
    Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit in-volutionand programmed cell death in the mouse mammarygland. J.Cell Biol.131:1095–1103.PubMedGoogle Scholar
  76. 76.
    N. F. Butte, J. M. Hopkinson, J. K. Moon, N. Mehta, and E. O. Smith (1999). Adjustments in energy expenditure andsubstrate utilization during late pregnancy and lactation. Am.J.Clin.Nutr.69:299–307.PubMedGoogle Scholar
  77. 77.
    K. L. Blaxter, E. P. Reineke, E. S. Crampton, and W. E. Petersen (1949). The role of thyroidal materials and of syn-theticgoitrogens in animal production and an appraisal of their practical use. J.Anim.Sci.8:307–352.Google Scholar
  78. 78.
    A. V. Capuco, S. Kahl, L. J. Jack, J. O. Bishop, and H. Wallace(1999). Prolactin and growth hormone stimulation of lactationin mice requires thyroid hormones. Proc.Soc.Exp.Biol.Med.221:345–351.PubMedGoogle Scholar
  79. 79.
    S. E. Ziska, M. Bhattacharjee, R. L. Herber, P. K. Qasba, and B. K. Vonderhaar (1988). Thyroid hormone regulation ofalpha-lactalbumin: Differential glycosylation and messengerribonucleic acid synthesis in mouse mammary glands. Endocrinology 123:2242–2248.PubMedGoogle Scholar
  80. 80.
    Y. Iwatani, N. Amino, O. Tanizawa, H. Mori, M. Kawashima,Y. Yabu, and K. Miyai (1987). Decrease of free thyroxin inserum of lactating women. Clin.Chem.33:1217–1219.PubMedGoogle Scholar
  81. 81.
    G. A. van Haasteren, H. van Toor, W. Klootwijk, B. Handler,E. Linkels, P. van der Schoot, J. van Ophemert, F. H. DeJong,T. J. Visser, and W. J. de Greef (1996). Studies on the role ofTRHand corticosterone in the regulation of prolactin and thy-rotrophinsecretion during lactation. J.Endocrinol.148:325–336.PubMedGoogle Scholar
  82. 82.
    L. J. Jack, S. Kahl, D. L. St Germain, and A. V. Capuco (1994). Tissue distribution and regulation of 50-deiodinase processesin lactating rats. J.Endocrinol.142:205–215.PubMedGoogle Scholar
  83. 83.
    L. Navarro, A. Landa, C. Valverde-R, and C. Aceves (1999). Mammary gland type I iodthyronine deiodinase is encoded bya short messenger ribonucleic acid. Endocrinology 138:4248–4254.Google Scholar
  84. 84.
    L. Quevedo-Corona, M. Franco-Colin, M. Caudillo-Romero,J. Pacheco-Rosado, S. Zamudio-Hernandez, and R. Racotta(2000). 3,5,30-Triiodothyronine administered to rat dams dur-inglactation increases milk yield and triglyceride concentra-tionand hastens pups growth. Life Sci.66:2013–2121.PubMedGoogle Scholar
  85. 85.
    S. R. Davis, R. J. Collier, J. P. McManamara, H. H. Head,and W. Sussman (1988). Effects of thyroxine and growth hor-monetreatment of dairy cows on milk yield, cardiac outputand mammary blood flow. J.Anim.Sci.66:70–79.PubMedGoogle Scholar
  86. 86.
    F. Peters, J. Schulze-Tollert, and W. Schuth (1991). Thyrotrophin-releasing hormone—A lactation-promotingagent? Br.J.Obstet.Gynecol.98:880–885.Google Scholar
  87. 87.
    S. Y. Kyriakou and N. J. Kuhn (1973). Lactogenesis in the diabetic rat. J.Endocrinol.59:199–200.PubMedGoogle Scholar
  88. 88.
    K. Hove (1978). Maintenance of lactose secretion during acute insulin deficiency in lactating goats. Acta Physiol.Scand.103:173–179.PubMedGoogle Scholar
  89. 89.
    M. C. Neville and M. F. Picciano (1997). Regulation of milklipid synthesis and composition. Ann.Rev.Nutr.17:159–184.Google Scholar
  90. 90.
    R. A. DeFronzo, J. D. Tobin, and R. Andres (1979). The glu-coseclamp technique. Amethod for quantifying insulin secre-tionand resistance. Am.J.Physiol.237:E214–E223.PubMedGoogle Scholar
  91. 91.
    J. M. Griinari, M. A. McGuire, D. A. Dwyer, D. E. Bauman, D. M. Barbano, and W. E. House (1997). The role of insulin inthe regulation of milk protein synthesis in dairy cows. J.DairySci.80:2361–2371.Google Scholar
  92. 92.
    M. C. Neville, V. Sawicki, and W. W. Hay Jr. (1993). Effect offasting, elevated plasma glucose and plasma insulin concentration son milk secretion in women. J.Endocrinol.139:165–173.PubMedGoogle Scholar
  93. 93.
    W. R. Crowley and W. E. Armstrong (1992). Neurochemi-calregulation of oxytocin secretion in lactation. Endocr.Rev.13:33–65.PubMedGoogle Scholar
  94. 94.
    W. S. Young III, E. Shepard, J. Amico, L. Hennighausen, K. U. Wagner, M. E. LaMarca, C. McKinney, and E. I. Ginns (1996). Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J.Neuroendocrinol.8:847–853.PubMedGoogle Scholar
  95. 95.
    G. Gimpl and F. Fahrenholz (2001). The oxytocin receptor system: Structure, function and regulation. Physiol.Rev 81:629–683.PubMedGoogle Scholar
  96. 96.
    R. M.Akers and A. M.Lefcourt (1982). Milking-and suckling-inducedsecretion of oxytocin and prolactin in parturient dairycows. Horm.Behav.16:87–93.PubMedGoogle Scholar
  97. 97.
    A. S. McNeilly, I. C. Robinson, M. J. Houston, and P. W. Howie(1983). Release of oxytocin and prolactin in response to suck-ling. Br.Med.J.Clin.Res.286:257–259.Google Scholar
  98. 98.
    M. S. Soloff, M. Alexandrova, and M. J. Fernstrom (1979). Oxytocin receptors: Triggers for parturition and lactation? Science 204:1313–1315.PubMedGoogle Scholar
  99. 99.
    A. Sapino, L. Macri, L. Tonda, and G. Bussolati (1993). Oxy-tocinenhances myoepithelial cell differentiation and prolifer-ationin the mouse mammary gland. Endocrinology 133:838–842.PubMedGoogle Scholar
  100. 100.
    J. A. Amico, A. Thomas, R. S. Crowley, and L. A. Burmeister(1998). Concentrations of leptin in the serum of pregnant,lactating, and cycling rats and of leptin messenger ribonucleicacid in rat placental tissue. Life Sci.63:1387–1395.PubMedGoogle Scholar
  101. 101.
    H. J. Kalkwarf (1999). Hormonal and dietary regulation of changes in bone density during lactation and after weaning in women. J.Mammary Gland Biol.Neoplasia 4:319–329.PubMedGoogle Scholar
  102. 102.
    P. Martyn and I. A. Hansen (1981). Initiation of lipogenic en-zymeactivities in rat mammary glands. Biochem.J.198:187–192.PubMedGoogle Scholar
  103. 103.
    R. W. Mellenberger and D. E. Bauman (1974). Metabolicadaptations during lactogenesis: Fatty acid synthesis in rab-bitmammary tissue during pregnancy and lactation. Biochem.J 138:373–379.PubMedGoogle Scholar
  104. 104.
    M. Peaker and C. J. Wilde (1996). Feedback control of milksecretion from milk. J.Mammary Gland Biol.Neoplasia 1:307–315.PubMedGoogle Scholar
  105. 105.
    R. D. Burgoyne and C. J. Wilde (1994). Control of secre-toryfunction in mammary epithelial cells. Cell.Signal.6:607–616.PubMedGoogle Scholar
  106. 106.
    K. A. Hammond, K. C. Lloyd, and J. Diamond (1996). Is mam-maryoutput capacity limiting to lactational performance inmice. J.Exp.Biol.199:337–349.PubMedGoogle Scholar
  107. 107.
    A. W. Bell and D. E. Bauman (1997). Adaptations of glu-cosemetabolism during pregnancy and lactation. J.MammaryGland Biol.Neoplasia 2:265–278.Google Scholar
  108. 108.
    M. C. Neville (1995). Volume and caloric density of human milk. In R. G. Jensen (ed.), Handbook of Milk Composition, Academic Press, San Diego, pp. 101–113.Google Scholar
  109. 109.
    C. J. Wilde, C. H. Knight, and D. J. Flint (1999). Controlof milk secretion and apoptosis during mammary involution. J.Mammary Gland Biol.Neoplasia 4:129–136.PubMedGoogle Scholar
  110. 110.
    A. Marti, Z. W. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelialcells. Eur.J.Cell Biol.73:158–165.PubMedGoogle Scholar
  111. 111.
    E. Tonner, G. J. Allan, and D. J. Flint (2000). Hormonal controlof plasmin and tissue-type plasminogen activator activity in ratmilk during involution of the mammary gland. J.Endocrinol.167:265–273.PubMedGoogle Scholar
  112. 112.
    I. H. Russo, M. Koszalka, and J. Russo (1990). Humanchorionic gonadotropin and rat mammary cancer prevention. J.Natl.Cancer Inst.82:1286–1289.PubMedGoogle Scholar
  113. 113.
    L. Sivaraman, O. M. Conneely, D. Medina, and B. W. O'Malley(2001). p53 is a potential mediator of pregnancy and hormone-inducedresistance to mammary carcinogenesis. Proc.Natl.Acad.Sci.U.S.A.98:12379–12384.PubMedGoogle Scholar
  114. 114.
    H. P. Gardner, S. I. Ha, C. Reynolds, and L. A. Chodosh (2000). The caM kinase, Pnck, is spatially and temporally regulatedduring murine mammary gland development and may identify an epithelial cell subtype involved in breast cancer. Cancer Res.60:5571–5577.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Margaret C. Neville
    • 1
  • Thomas B. McFadden
    • 2
  • Isabel Forsyth
    • 3
  1. 1.Department of Physiology and BiophysicsUniversity of Colorado Health Sciences CenterDenver
  2. 2.Department of Animal ScienceUniversity of VermontBurlington
  3. 3.The Babraham Institute, BabrahamCambridgeUK

Personalised recommendations