Journal of Automated Reasoning

, Volume 28, Issue 3, pp 321–336 | Cite as

Autarkic Computations in Formal Proofs

  • Henk Barendregt
  • Erik Barendsen


Formal proofs in mathematics and computer science are being studied because these objects can be verified by a very simple computer program. An important open problem is whether these formal proofs can be generated with an effort not much greater than writing a mathematical paper in, say, LATEX. Modern systems for proof development make the formalization of reasoning relatively easy. However, formalizing computations in such a manner that the results can be used in formal proofs is not immediate. In this paper we show how to obtain formal proofs of statements such as Prime(61) in the context of Peano arithmetic or (x+1)(x+1)=x2+2x+1 in the context of rings. We hope that the method will help bridge the gap between the efficient systems of computer algebra and the reliable systems of proof development.

formal proof computer algebra proof development autarkic cmputation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspers, W. A. M., de Bakker, J. W., ten Hagen, P. J. W., Hazewinkel, M., van der Houwen, P. J., and Nieland, H. M. (eds.): Images of SMC Research 1996, Stichting Mathematisch Centrum, Amsterdam, 1996.Google Scholar
  2. Barendregt, H. P.: Lambda calculi with types, in S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Vol. 2, Oxford University Press, 1992, pp. 117–309.Google Scholar
  3. Barendregt, H. P.: The quest for correctness, in Aspers et al., 1996, pp. 39–58.Google Scholar
  4. Boyer, R. S. and Moore, J S.: A Computational Logic, Academic Press, New York, 1988.Google Scholar
  5. de Bruijn, N. G.: The mathematical language AUTOMATH, its usage and some of its extensions, in M. Laudet, D. Lacombe, and M. Schuetzenberger (eds.), Symposium on Automatic Demonstration, INRIA, Versailles, Lecture Notes in Comput. Sci. 125, Springer-Verlag, Berlin, 1970, pp. 29–61. Also in Nederpelt et al., 1994.Google Scholar
  6. de Bruijn, N. G.: Reflections on Automath 1990. Also in Nederpelt et al., 1994, pp. 201–228.Google Scholar
  7. Bundy, A. (ed.): CADE-12, Lecture Notes in Comput. Sci. 814, Springer-Verlag, Berlin, 1984.Google Scholar
  8. Cohen, A. M.: Computers: (Ac)counting for mathematical proofs, in Aspers et al., 1996, pp. 15–38.Google Scholar
  9. Constable, R. L.: Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.Google Scholar
  10. Coquand, T. and Huet, G.: The calculus of constructions, Information and Computation 76 (1988), 95–120. Available at URL: Scholar
  11. Elbers, H.: Personal communication, 1996.Google Scholar
  12. Luo, Z. and Pollack, R.: The LEGO proof development system: A user's manual, Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992. LEGO system available via URL Scholar
  13. McCarthy, J.: LISP 1.5 Programmer's Manual, MIT Press, Cambridge, MA, 1962.Google Scholar
  14. Nederpelt, R. P., Geuvers, J. H., and de Vrijer, R. C. (eds.): Selected Papers on Automath, Studies in Logic 133, North-Holland, Amsterdam, 1994.Google Scholar
  15. Oostdijk, M.: Proof by Calculation, Master's thesis 385, Universitaire School voor Informatica, University of Nijmegen, 1996.Google Scholar
  16. Poincaré, H.: La Science et l'Hypothèse, Flammarion, Paris. 1902.Google Scholar
  17. Ruys, M. P. J.: Studies in Mechanical Verification of Mathematical Proofs, Dissertation, University of Nijmegen, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Henk Barendregt
    • 1
  • Erik Barendsen
    • 1
  1. 1.Computing Science InstituteUniversity of NijmegenNijmegenThe Netherlands. e-mail

Personalised recommendations