Climatic Change

, Volume 54, Issue 1–2, pp 29–73 | Cite as

Responsibility for Past and Future Global Warming: Uncertainties in Attributing Anthropogenic Climate Change

  • Michel Den Elzen
  • Michiel Schaeffer


During the negotiations on the Kyoto Protocol, Brazil proposed a methodology to link the relative contribution of Annex I Parties to emission reductions with the relative contributions of Parties to the global-mean temperature increase. The proposal was not adopted during the negotiations but referred to the Subsidiary Body for Scientific and Technological Advice for consideration of its methodological aspects. In this context we analyze the impact of model uncertainties and methodological choices on the regionally attributed global-mean temperature increase. A climate assessment model has been developed to calculate changes in greenhouse gas concentrations, global-mean temperature and sea-level rise attributable to individual regions. The analysis shows the impact of the different choices in methodological aspects to be as important as the impact of model uncertainties on a region's contribution to present and future global temperature increases. Choices may be the inclusion of the anthropogenic non-CO2 greenhouse gas emissions and/or theCO2 emissions associated with land-use changes. When responsibility to global temperature change is attributed to all emitting Parties, the impacts of modeling uncertainties and methodological choices on contributions of individual Parties are considerable. However, if relative contributions are calculated only within the group of Annex I countries, the results are less sensitive to the uncertainty aspects considered here.


Kyoto Protocol Global Temperature Methodological Aspect Anthropogenic Climate Change Methodological Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J.: 1994, 'IMAGE 2.0: Integrated Modeling of Global Climate Change', Water Air Soil Pollut. 76, 1-2.Google Scholar
  2. Alcamo, J., Kreileman, G. J. J., Bollen, J. C., Born, G. J. van den, Gerlagh, R., Krol, M. S., Toet, A. M. C., and Vries, H. J. M. de: 1996, 'Baseline Scenarios of Global Environmental Change', Global Environ. Change 6, 261-303.Google Scholar
  3. Alcamo, J., Leemans, R., and Kreileman, G. J. J.: 1998, Global Change Scenarios of the 21st Century. Results from the IMAGE 2.1 Model, Elsevier Science, London.Google Scholar
  4. Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A., and Kumar, N.: 1999, 'Carbon Dioxide Emissions from Fossil Fuel Use, 1751-1950'. Tellus 51B, 759-765. This data set has been integrated into CDIAC data set NDP-030 'Global, Regional, and National CO2 Emission Estimates from Fossil Fuel Burning, Cement Production, and Gas Flaring, 1751-1996'.Google Scholar
  5. Andronova, N. and Schlesinger, M. E.: 2000, 'Causes of Global Temperature Changes During the 19th and 20th Centuries', Geophys. Res. Lett. 27, 2137-2140.Google Scholar
  6. Berk, M.M. and Elzen M. G. J. den: 1998, 'The Brazilian Proposal Evaluated', CHANGE 44, 19-23.Google Scholar
  7. Cess, R. D., Potter, G. L., Blanchet, J. P, Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlesse, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: 1989, 'Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models', Science 245, 513-516.Google Scholar
  8. Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: 2001, 'Global Reponse of Terrestrial Ecosystem Structure and Function to CO2 and Climate Change: Results from Six Dynamic Global Vegetation Models', Global Change Biol. 7, 357-373.Google Scholar
  9. Elzen, M. G. J. den: 1998, The Meta-IMAGE 2.1 Model: An Interactive Tool to Assess Global Climate Change, National Institute of Public Health and the Environment, Bilthoven, The Netherlands. RIVM Report No. 461502020.Google Scholar
  10. Elzen, M. G. J. den: 1999, 'Report on the Expert Meeting on the Brazilian Proposal: Scientific Aspects and Data Availability', Center Forecasts and Climate Studies (CPTEC), Cachoeira Paulista, Brasil, May 19-20, 1999.Google Scholar
  11. Elzen, M. G. J. den, Berk, M., Both, S., Faber, A., and Oostenrijk, R., 2001, FAIR 1.0: An Interactive Model to Explore Options for Differentiation of Future Commitments in International Climate Policy Making, National Institute of Public Health and the Environmental (RIVM), Bilthoven, the Netherlands, RIVM Report No. 728001011 (the FAIR model can be downloaded via: Scholar
  12. Elzen, M. G. J. den, Berk, M., Scheaffer, M., Olivier, J., Hendriks, C., and Metz, B.: 1999, The Brazilian Proposal and Other Options for International Burden Sharing: An Evaluation of Methodological and Policy Aspects Using FAIR, National Institute of Public Health and the Environment, Bilthoven, The Netherlands. RIVM Report No. 728001011.Google Scholar
  13. Elzen, M. G. J. den, Beusen, A. H.W., and Rotmans, J.: 1997, 'An Integrated Modeling Approach to Global Carbon and Nitrogen Cycles: Balancing their Budgets', Global Biogeochem. Cycles 11, 191-215.Google Scholar
  14. Enting, I. G.: 1998, Attribution of Greenhouse Gas Emissions, Concentrations and Radiative Forcing, CSIRO Technical Paper No. 38, Aspendale, Victoria, Australia.Google Scholar
  15. Enting, I. G., Wigley, T. M. L., and Heimann, M.: 1994, Future Emissions and Concentrations of Carbon Dioxide, CSIRO Technical Paper No. 31, Mordialloc, Australia.Google Scholar
  16. Filho, M. L. G. and Miguez, M.: 1998, Time Dependent Relationship between Emissions of Greenhouse Gases and Climate Change, Ministry of Science and Technology, Brasilia, Brazil.Google Scholar
  17. Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, 'A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid v3.0)', Ecol. Modelling 95, 249-287.Google Scholar
  18. Haan, B. J. de, Jonas, M., Klepper, O., Krabek, J., Krol, M. S., and Olendrzynki, K.: 1994, 'An Atmosphere-Ocean Model for Integrated Assessment of Global Change', Water Air Soil Pollut. 76, 283-318.Google Scholar
  19. Harvey, L. D.: 1989, 'Effect of Model Structure on the Response of Terrestrial Biosphere Models to CO2 and Temperature Increases', Global Biogeochem. Cycles 3, 137-153.Google Scholar
  20. Harvey, L. D., Gregory, G., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S. Wigley, T.M. L., and Wolde, J. de: 1997, An Introduction to Simple Climate Model Used in the IPCC Second Assessment Report, Cambridge University Press, Cambridge, U.K.Google Scholar
  21. Hasselmann, K., Sausen, R., Maier-Reimer, E., and Voss, R.: 1993, 'On the Cold Start Problem in Transient Simulations with Coupled Atmosphere-Ocean Models', Clim. Dyn. 9, 53-61.Google Scholar
  22. Haywood, J. M., Stouffer, R. J., Wetherald, R. T., Manabe, S., and Ramaswamy, V.: 1997, 'Transient Response of a Coupled Model to Estimated Changes in Greenhouse Gas and Sulfate Concentrations', Geophys. Res. Lett. 24, 1335-1338.Google Scholar
  23. Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E., and Joos, F.: 1999, A Nonlinear Impulse Response Model of the Coupled Carbon Cycle-Ocean-Atmosphere Climate System, Max Planck Institute for Meteorology, Hamburg, MPI Report No. 290.Google Scholar
  24. Houghton, R. A.: 1999, 'The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990', Tellus 51B, 298-313.Google Scholar
  25. Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Petersomn, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., and Myers, N.: 1987, 'The Flux of Carbon from Terrestrial Ecosystems to the Atmosphere in 1980 Due to Changes in Land-Use: Geographical Distribution of the Global Flux', Tellus Ser. B39, 122-139.Google Scholar
  26. Houghton, R. A. and Hackler, J. L.: 1995, Continental Scale Estimates of the Biotic Carbon Flux from Land Cover Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 18501980, ORNL/CDIAC-79.Google Scholar
  27. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, III, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, 'Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere', Ecol. Monogr. 53, 235-262.Google Scholar
  28. IPCC: 1995, The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  29. Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T., Le Quere, C., and Sarmiento, J. L.: 1996, 'An Efficient and Accurate Representation of Complex and Biospheric Models of Anthropogenic Carbon Uptake', Tellus 48B, 397-417.Google Scholar
  30. Klein Goldewijk, C. C. M. and Battjes, J. J.: 1997, A Hundred Year (1890-1990) Database for Integrated Environmental Assessments (HYDE, Version 1.1), National Institute of Public Health and the Environment, Bilthoven, The Netherlands, RIVM Report No. 422514 002.Google Scholar
  31. Krol, M. S. and Woerd, H. van der: 1994, 'Simplified Calculation of Atmospheric Concentration of Greenhouse Gases and Other Constituents for Evaluation of Climate Scenarios', Water Air Soil Pollut. 76, 259-281.Google Scholar
  32. Leemans, R. and Hootsmans, R.: 1998, Ecosystems Vulnerability and Climate Protection Goals, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, RIVM Report No. 481508004.Google Scholar
  33. Manabe, S. and Stouffer, R. J.: 1994, 'Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide', J. Climate 7, 5-23.Google Scholar
  34. Marland, G., Boden, T. A., Andres, R. J., Brenkert, A. L., and Johnston C. A.: 1999a, 'Global, Regional, and National Fossil Fuel CO2 Emissions', in Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee ( Scholar
  35. Marland, G., Brenkert, A., and Olivier, J. G. J.: 1999b, 'CO2 from Fossil Fuel Burning: A Comparison of ORNL and EDGAR Estimates of National Emissions', Environ. Sci. Policy 2, 265-274.Google Scholar
  36. Marland, G. and Rotty, R. M.: 1984, 'Carbon Dioxide Emissions from Fossil Fuels: A Procedure for Estimation and Results for 1950-1982', Tellus 36B, 232-261.Google Scholar
  37. Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjonaas, O. J., Koopmans, C. J., Schleppi, P., Tietema, A., and Wright, R. F.: 1999, 'Nitrogen Deposition Makes a Minor Contribution to Carbon Sequestration in Temperate Forests', Nature 398, 145-148.Google Scholar
  38. Olivier, J. G. J., Bouwman, A. F., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Maas, C. W. M. van der, and Zandveld, P. Y. J.: 1999, 'Sectoral Emission Inventories of Greenhouse Gases for 1990 on a Per Country Basis as Well as on 1° × 1°', Environ. Sci. Policy 2, 241-263.Google Scholar
  39. Olivier, J. G. J., Bouwman, A. F., Van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L.: 1996, Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone Depleting Substances for All Anthropogenic and Most Natural Sources on a Per Country Basis and on 1° × 1° Grid, RIVM, Bilthoven, The Netherlands, RIVM Report No. 771060 002/TNO-MEP Report No. R96/119.Google Scholar
  40. Opsteegh, J. D., Haarsma, R. J., Selten, F. M., and Kattenberg, A.: 1998, 'ECBILT: A Dynamic Alternative to Mixed Boundary Conditions in Ocean Models', Tellus 50A, 348-367.Google Scholar
  41. Osborn, T. J. and Wigley, T. M. L.: 1994, 'A Simple Model for Estimating Methane Concentrations and Lifetime Variations', Clim. Dyn. 9, 181-193.Google Scholar
  42. Prather, M. J., 1989: An Assessment Model for Atmospheric Composition, NASA Conference Publications, CP-3203, p. 64.Google Scholar
  43. Prather, M. J.: 1994, 'Lifetimes and Eigenstates in Atmospheric Chemistry', Geophys. Res. Lett. 21, 801-804.Google Scholar
  44. Prather, M. J.: 1996, 'Time Scales in Atmospheric Chemistry: Theory, GWPs for CH4 and CO, and Runaway Growth', Geophys. Res. Lett. 23, 2597-2600.Google Scholar
  45. Prather, M. J., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., and Zhou, X.: 1995, 'Other Trace Gases and Atmospheric Chemistry', in Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, H., Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, U.K., pp. 73-126.Google Scholar
  46. Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, 'Use of an Upwelling-Diffusion Energy Balance Climate Model to Simulate and Diagnose A/OGCM Results', Clim. Dyn. 17, 601-613.Google Scholar
  47. Rosa, L. P. and Ribeiro, S. K., 2001: 'The Present, Past and Future Contributions to Global Warming of CO2 Emissions from Fuels', Clim. Change 48, 289-308.Google Scholar
  48. Schimel, D., Dalves, D., Enting, I. G., Heimann, M., Joos, J., Raynaud, D., Wigley, T. M. L., Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., Zhou, X., Jonas, P., Charlson, R., Rodhe, H., Sadasivan, S., Shine, K. P., Fouquart, Y., Ramaswamy, V., Solomon, S., Srinivasan, J., Albritton, D., Derwent, R., Isaksen, I., Lal, M., and Wuebbles, D.: 1995, 'Radiative Forcing of Climate Change', in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995, The Science of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 65-131.Google Scholar
  49. Schimel, D., Enting, I. G., Heimann, M., Wigley, T. M. L., Raynaud, D., Alves, D., and Siegenthaler, U.: 1996, 'CO2 and the Carbon Cycle', in Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, H., Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, U.K., pp. 35-71.Google Scholar
  50. Schlesinger, M. E. and Jiang, X.: 1990, 'Simple Model Representation of Atmosphere-Ocean GCMs and Estimation of the Time Scale of CO2-Induced Climate Change', J. Clim. 3, 1297-1315.Google Scholar
  51. Senior, C. A. and Mitchell, J. F. B.: 2000, 'The Time-Dependence of Climate Sensitivity', Geophys. Res. Lett. 27, 2685-2688.Google Scholar
  52. Siegenthaler, U. and Joos, F.: 1992, 'Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle', Tellus 44B, 186-207.Google Scholar
  53. Smith, S. J., Pitcher, H., and Wigley, T. M. L. (2001): 'Global and Regional Anthropogenic Sulfur Dioxide Emissions', Glob. Plan. Change 29, 99-119.Google Scholar
  54. Solomon, A. M. and Leemans, R.: 1997, 'Boreal Forest Carbon Stocks and Wood Supply: Past, Present and Future Responses to Changing Climate, Agriculture and Species Availibility', Agric. For. Meteorol. 84, 137-151.Google Scholar
  55. Stocker, T. F. and Shmittner, A.: 1997, 'Influence of CO2 Emission Rates on the Stability of the Thermohaline Circulation', Nature 388, 862-865.Google Scholar
  56. Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: 1999, 'Causes of Twentieth-Century Temperature Change Near the Earth's Surface', Nature 399, 569-572.Google Scholar
  57. UNFCCC: 1992, Convention on Climate Change, UNEP/IUC, Geneva Executive Center, Geneva.Google Scholar
  58. UNFCCC: 1995, Conference of the Parties, First Session, Berlin, 28 March-7 April 1995, Secretariat/ UNEP, FCCC/CP/1995/7, April 1995.Google Scholar
  59. UNFCCC: 1997, Brazil; Proposed Elements of a Protocol to the United Nations Framework Convention on Climate Change, presented by Brazil in response to the Berlin Mandate, UNFCCC/AGBM/1997/MISC.1/ Add.3 GE.97-, Bonn.Google Scholar
  60. UNFCCC: 1998, 'Kyoto Protocol' ( Scholar
  61. Voss, R., Sausen, R., and Cubasch, U.: 1998, 'Periodically Synchronously Coupled Integrations with the Atmosphere-Ocean General Circulation Model ECHAM3/LSG', Clim. Dyn. 14, 249-266.Google Scholar
  62. Walker, B. H., Steffen, W. L., and Loangridge, J.: 1999, 'Interactive and Integrated Effects of Global Change on Terrestrial Ecosystems', in Walker, B., Steffen, W., Canadell, J., and Ingram, J. (eds), The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Cambridge University Press, pp. 329-375.Google Scholar
  63. Watterson, I. G.: 2000, 'Interpretation of Simulated Global Warming Using a Simple Model', J. Clim. 13, 202-215.Google Scholar
  64. White, A., Canell, M. G. R., and Friend, A. D.: 1999, 'Climate Change Impacts on Ecosystems and the Terrestrial Carbon Sink: A New Analysis.', Global Environ. Change 9, 21-30.Google Scholar
  65. Wigley, T. M. L.: 1991, 'A Simple Inverse Carbon Cycle Model', Global Biogeochem. Cycles 5, 373-382.Google Scholar
  66. Wigley, T. M. L.: 1993, 'Balancing the Carbon Budget: Implications for Future Carbon Dioxide Concentration Changes', Tellus 45B.Google Scholar
  67. Wigley, T.M. L. and Raper, S. C. B.: 1992, 'Implications for Climate and Sea-Level of Revised IPCC Emissions Scenarios', Nature 357, 293-300.Google Scholar
  68. Wigley, T. M. L. and Raper, S. C. B.: 1993, 'Future Changes in Global Mean Temperature and Sea Level', in Warrick, R. A., Barrow, E. M., and Wigley, T. M. L. (eds.), Climate and Sea Level Change: Observations, Projections and Implications, Cambridge, Cambridge University Press.Google Scholar
  69. Wigley, T.M. L. and Schlesinger, M. E.: 1985, 'Analytical Solution for the Effect on Increasing CO2 on Global Mean Temperature', Nature 315, 649-652.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michel Den Elzen
    • 1
  • Michiel Schaeffer
    • 1
    • 2
  1. 1.Dutch National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  2. 2.Royal Dutch Meteorological Institute (KNMI)De BiltThe Netherlands

Personalised recommendations