Climatic Change

, Volume 54, Issue 1–2, pp 107–139 | Cite as

Substitution of Natural Gas for Coal: Climatic Effects of Utility Sector Emissions

  • Katharine Hayhoe
  • Haroon S. Kheshgi
  • Atul K. Jain
  • Donald J. Wuebbles
Article

Abstract

Substitution of natural gas for coal is one means of reducing carbon dioxide (CO2) emissions. However, natural gas and coal use also results in emissions of other radiatively active substances including methane (CH4), sulfur dioxide (SO2), a sulfate aerosolprecursor, and black carbon (BC) particles. Will switching from coal to gas reduce the net impact of fossil fuel use on global climate? Using the electric utility sector as an example, changes in emissions of CO2, CH4,SO2 and BC resulting from the replacement of coal by natural gas are evaluated, and their modeled net effect on global mean-annual temperature calculated. Coal-to-gas substitution initially produces higher temperatures relative to continued coal use. This warming is due to reduced SO2 emissionsand possible increases in CH4 emissions, and can last from 1 to 30years, depending on the sulfur controls assumed. This is followed by a net decrease in temperature relative to continued coal use, resulting from lower emissions of CO2 and BC. The length of this period and the extent of the warming or cooling expected from coal-to-gas substitution is found to depend on key uncertainties and characteristics of the substitutions, especially those related to: (1) SO2 emissions and consequentsulphate aerosol forcing; and (2) the relative efficiencies of the power plantsinvolved in the switch.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., Jacob, D.: 2001, 'General Circulation Model Assessment of Direct Radiative Forcing by the Sulfate-Nitrate-Ammonium-Water Inorganic Aerosol System', J. Geophys. Res. 106, 1097-1111.Google Scholar
  2. Alexandrova, V.: 2000, 'Gas Supply Sector and Methane Emissions in Bulgaria', in Proceedings of the Second International Methane Mitigation Conference, Novosibirsk, Russia, June 2000, www.ergweb.com/methane.Google Scholar
  3. Audus, H.: 1999, 'Technologies for CO2 Emission Reduction', presented at the International Conference on Sustainable Future of the Global System, Tokyo, Japan, February 23-24, 1999.Google Scholar
  4. Barns, D. W. and Edmonds, J. A.: 1990, An Evaluation of the Relationship between the Production and Use of Energy and Atmospheric Methane Emissions, U.S. Dept. of Energy, Carbon Dioxide Research Program, Report #TR047.Google Scholar
  5. Beck, L. L.: 1993, 'A Global Methane Emissions Program for Landfills, Coal Mines, and Natural Gas Systems', Chemosphere 26, 447-452.Google Scholar
  6. Beck, L. L., Piccot, S. D., and Kirchgessner, D. A.: 1993, 'Industrial Sources' in Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change, Springer-Verlag, Berlin, pp. 399-431.Google Scholar
  7. Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: 1996, 'Global Gridded Inventories of Anthropogenic Emissions of Sulfur and Nitrogen', J. Geophys. Res. 101, 29239-29253.Google Scholar
  8. Bodansky, D.: 1996, 'May We Engineer the Climate?', Clim. Change 33, 309-321.Google Scholar
  9. Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., Chylek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iverson, T., Kato, S., Kinne, S., Kirkevag, A., Knapp, K. R., Lacis, A., Laszlo, I., and Mishchenko, M. I.: 1998, 'Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols', J. Geophys. Res. 103, 16979-16998.Google Scholar
  10. Brown, M. A., Levine, M. D., Romm, J. P., Rosenfeld, A. H., and Koomey, J. G.: 1998, 'Engineering-Economic Studies of Energy Technologies to Reduce Greenhouse Gas Emissions: Opportunities and Challenges', Ann. Rev. Energy Environ. 23, 287-385.Google Scholar
  11. Brühl, C.: 1993, 'The Impact of the Future Scenarios for Methane and Other Chemically Active Gases on the GWP of Methane', Chemosphere 26, 731-738.Google Scholar
  12. Casten, T. R.: 1998, Turning Off the Heat, Prometheus Books, Amherst, NY.Google Scholar
  13. Creedy, D. P.: 1993, 'Methane Emissions from Coal Related Sources in Britain: Development of a Methodology', Chemosphere 26, 419-439.Google Scholar
  14. Chuang, C. C., Penner, J. E., Taylor, K. E., Grossman, A. S., and Walton, J. J.: 1997, 'An Assessment of the Radiative Effects of Anthropogenic Sulfate', J. Geophys. Res. 102, 3761-3778.Google Scholar
  15. Coconea, G., Pintican, L., Sarbu, S., and Sarbu, S.: 2000, 'Methane Gas Emissions from the Romanian Natural Gas Transport System', in Proceedings of the Second International Methane Mitigation Conference, Novosibirsk, Russia, June 2000, www.ergweb.com/methane.Google Scholar
  16. Cooke, W. F. and Wilson, J. J. N.: 1996, 'A Global Black Carbon Aerosol Model', J. Geophys. Res. 101, 19395-19409.Google Scholar
  17. Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: 1999, 'Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model', J. Geophys. Res. 104, 22137-22162.Google Scholar
  18. Department of Energy (DOE), U.S.: 2000, Clean Coal Technology Demonstration Program Update 1999, www.lanl.gov/projects/cctc/resources/pdfsprog/cctupdat/cct_program_1999_all.pdf.Google Scholar
  19. Dickinson, R. E.: 1996, 'Climate Engineering: A Review of Aerosol Approaches to Changing the Global Energy Balance', Clim. Change 33, 279-290.Google Scholar
  20. E7 Network of Expertise for the Global Environment: 2000, The Impact of Climate Change on the Strategies of the Electricity Sector, Montreal, PQ, www.e7.org/PDFs/E7_Climatic.pdf.Google Scholar
  21. Energy Information Administration (EIA): 1997, The Effects of Title IV of the Clean Air Act Amendments of 1990 on Electric Utilities: An Update, Washington, D.C., DOE/EIA-0582/97.Google Scholar
  22. Energy Information Administration (EIA): 1999, World Net Electricity Generation by Type, www.eia.doe.gov/pub/international/iea99/table63.xls.Google Scholar
  23. Energy Information Administration (EIA): 2000a, International Gross Heat Content of Dry Natural Gas, 1980-1999, www.eia.doe.gov/pub/international/iealf/tablec5.xls.Google Scholar
  24. Energy Information Administration (EIA): 2000b, International Gross Heat Content of Coal, 1980-1999, www.eia.doe.gov/pub/international/iealf/tablec6.xls.Google Scholar
  25. Energy Information Administration (EIA): 2000c, Electric Power Annual 1999: Volume II, Office of Coal, Nuclear, Electric and Alternate Fuels, U.S. Department of Energy.Google Scholar
  26. Energy Information Administration (EIA): 2000d, Emissions of Greenhouse Gases in the U.S. 1999, Report #EIA/DOE-0573(99), Washington, D.C.Google Scholar
  27. Energy Information Administration (EIA): 2001, International Energy Outlook, www.eia.doe.gov/oiaf/ieo.html.Google Scholar
  28. Environmental Protection Agency (EPA): 1993a, in Hogan, K. (ed.), Opportunities to Reduce Anthropogenic Methane Emissions in the United States, U.S. EPA, Office of Air and Radiation, EPA 430-R-93-012.Google Scholar
  29. Environmental Protection Agency (EPA): 1993b, in Hogan, K. (ed.), Options for Reducing Methane Emissions Internationally, U.S. EPA, Office of Air and Radiation, EPA 430-R-93-006B.Google Scholar
  30. Environmental Protection Agency (EPA): 1996, Supplement B to Compilation of Air Pollutant Emission Factors Volume I: Stationary Point and Area Sources, Office of Air Quality Planning and Standards.Google Scholar
  31. Environmental Protection Agency (EPA): 1997, Title 40-Environmental Protection CFR Pilot; Part 73: Sulfur Dioxide Allowance System, www.epa.gov/docs/epacfr40/chapt-1.info/subch-C/40P0073.pdf.Google Scholar
  32. Environmental Protection Agency (EPA): 2000a, Emissions Scorecard 1999, www.epa.gov/airmarkets/emissions/score99/index.html.Google Scholar
  33. Environmental Protection Agency (EPA): 2000b, Effects of Acid Rain, www.epa.gov/airmarkets/acidrain/effects/index.html.Google Scholar
  34. Erickson, D. J., Oglesby, R. J., and Marshall, S.: 1995, 'Climate Response to Indirect Anthropogenic Sulfate Forcing', Geophys. Res. Lett. 22, 2017-2020.Google Scholar
  35. Feichter, J., Lohmann, U., and Schult, I.: 1997, 'The Atmospheric Sulfur Cycle in ECHAM-4 and its Impact on the Shortwave Radiation', Clim. Dyn. 13, 235-246.Google Scholar
  36. Freedman, S. I.: 1990, 'The Role of Natural Gas in Electric Power Generation, 1990 to 2020', in Tester, J. W., Wood, D. O., and Ferrari, N. A. (eds.), Energy and the Environment in the 21st Century, MIT Press, Cambridge, MA.Google Scholar
  37. Freedman, S. I.: 1996, 'The Role of Natural Gas in Electric Power Generation in the Twenty-First Century', in Karsunoaly, B., Mintz, S., and Perlnatter, A. (eds.), Economics and Politics of Energy, Plenum Press, New York.Google Scholar
  38. Fuglestvedt, J. S., Isaksen, I. S. A., and Wang, W.-C.: 1996, 'Estimates of Indirect Global Warming Potentials for CH4, CO and NOx', Clim. Change 34, 405-437.Google Scholar
  39. Gaffney, J. S. and Marley, N. A.: 1998, 'Uncertainties of Aerosol Effects in Global Climate Models', Atmos. Environ. 32, 2873-2874.Google Scholar
  40. Gale, J. and Freund, P.: 2000, 'Reducing Methane Emissions to Combat Global Climate Change: The Role Russia Can Play', in Proceedings of the Second International Methane Mitigation Conference, Novosibirsk, Russia, June 2000, www.ergweb.com/methane.Google Scholar
  41. Gas Research Institute (GRI): 1997, Effect of Methane Emissions on Global Warming, Appendix B, Gas Research Institute, Chicago, IL.Google Scholar
  42. Hargreaves, D., Eden-Green, M., and Devaney, J.: 1994, World Index of Resources and Population, Dartmouth Pub., Brookfield, VT.Google Scholar
  43. Hansen, J. E., Sato, M., Lacis, A., Ruedy, R., Tegen, I., and Matthews, E.: 1998, 'Climate Forcings in the Industrial Era', Proc. Nat. Acad. Sci. 95, 12753-12758.Google Scholar
  44. Hansen, J., Sato, M., Ruedy, R., Lacis, A., Oinas, V.: 2000, 'Global Warming in the Twenty-First Century: An Alternative Scenario', PNAS 97, 9875-9880.Google Scholar
  45. Harrison, M. R., Campbell, L. M., Shires, T. M., and Cowgill, R. M.: 1995, Methane Emissions from the Natural Gas Industry, Volume I: Executive Summary, Gas Research Institute, Chicago, IL, GRI-94/0259.1.Google Scholar
  46. Harvey, L. D. D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S., Wigley, T., and de Wolde, J.: 1997, An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report, IPCC Technical Paper II, Intergovernmental Panel on Climate Change, Geneva.Google Scholar
  47. Hay, N. E.: 1990, 'Natural Gas and the Environment', in Vergara, W., Hay, N., and Hall, C. (eds.), Natural Gas — its Role in Economic Development, Westview Press, Boulder, CO.Google Scholar
  48. Hayhoe, K., Kheshgi, H., Jain, A., and Wuebbles D.: 1998, 'Trade-Offs in Fossil Fuel Use: The Effects of CO2, CH4 and SO2 Aerosol Emissions on Climate', World Res. Rev. 10, 321-333.Google Scholar
  49. Haywood, J. M., Roberts, D. L., Slingo, A., Edwards, J. M., and Shine, K. P.: 1997, 'General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol', J. Climate 10, 1562-1577.Google Scholar
  50. Haywood, J. M. and Ramaswamy, V.: 1998, 'Global Sensitivity Studies of the Direct Radiative Forcing Due to Anthropogenic Sulfate and Black Carbon Aerosols', J. Geophys. Res. 103, 6043-6058.Google Scholar
  51. Haywood, J. M., Ramaswamy, V., and Soden, B. J.: 1999, 'Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans', Science 283, 1299-1303.Google Scholar
  52. Haywood, J. and Boucher, O.: 2000, 'Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review', Rev. Geophys. 38, 513-543.Google Scholar
  53. Hong, B. D. and Slatick, E. R.: 1994, 'Carbon Dioxide Emission Factors for Coal', Energy Information Administration, Quarterly Coal Report, Jan.-Apr., pp. 1-8.Google Scholar
  54. Intergovernmental Panel on Climate Change (IPCC): 1995, in Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, H., Callander, B. A., Haites, E., Harris, N., and Maskell, K., (eds.), Climate Change 1994: Radiative Forcing of Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  55. Intergovernmental Panel on Climate Change (IPCC): 1996a, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  56. Intergovernmental Panel on Climate Change (IPCC): 1996b, in Watson, R., Zinyowera, M., and Moss, R. (eds.), Climate Change 1995: Impacts, Adaptations, and Mitigations of Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  57. Intergovernmental Panel on Climate Change (IPCC): 1996c, in Watson, R., Zinyowera, M., and Moss, R. (eds.), Technologies, Policies and Measures for Mitigating Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  58. Intergovernmental Panel on Climate Change (IPCC): 2000, Nakicenovic, N. (ed.), Emissions Scenarios, Cambridge University Press, Cambridge, U.K.Google Scholar
  59. Intergovernmental Panel on Climate Change (IPCC): 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, U.K.Google Scholar
  60. International Energy Agency (IEA): 1991a, Energy Efficiency and the Environment, IEA/OECD, Paris.Google Scholar
  61. International Energy Agency (IEA): 1991b, Greenhouse Gas Emissions: The Energy Dimension, IEA/OECD, Paris.Google Scholar
  62. International Energy Agency (IEA): 1991c, Natural Gas — Prospects and Policies, OECD/IEA, Paris.Google Scholar
  63. International Energy Agency (IEA): 1996, World Energy Outlook, IEA/OECD, Paris.Google Scholar
  64. International Energy Agency (IEA): 1998, Specific Net Calorific Values for Coal, www.iea.org/statist/keyworld/p_0904.htm.Google Scholar
  65. International Energy Agency (IEA): 2001, Electricity Production from Fossil Fuels, www.iea.org/statist/keyworld/.Google Scholar
  66. International Energy Agency Greenhouse Gas R&D Programme: 1999, Greenhouse Gas Emissions from Power Stations, www.ieagreen.org.uk/sr1p.htm.Google Scholar
  67. International Greenhouse Partnerships Office (IGPO): 2000, in Energy Strategies and George Wilkenfeld and Asc., (eds.),Workbook for Calculating Greenhouse Gas Reductions from Projects Using Electricity and Heat Generation from Fossil Fuels, Department of Industry, Science and Resources, Canberra, Australia, ISR 2000/069.Google Scholar
  68. Jacobson, M. Z.: 2001a, 'Global Direct Radiative Forcing Due to Multicomponent Anthropogenic and Natural Aerosols', J. Geophys. Res. 106, 1551-1568.Google Scholar
  69. Jacobson, M. Z.: 2001b, 'Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols', Nature 409, 695-697.Google Scholar
  70. Jain, A. K., Kheshgi, H. S., and Wuebbles, D. J.: 1994, Integrated Science Model for Assessment of Climate Change, Lawrence Livermore National Laboratory, UCRL-JC 116526; also presented at AWMA 87th Annual Meeting, Cincinnati, Ohio, June 19-24, 1994.Google Scholar
  71. Jain, A. K., Kheshgi, H. S., Hoffert, M. I., and Wuebbles, D. J.: 1995, 'Distribution of Radiocarbon as a Test of Global Carbon-Cycle Models', Global Biogeochem. Cycles 9, 153-166.Google Scholar
  72. Jain, A. K., Kheshgi, H. S., and Wuebbles, D. J.: 1996, 'A Globally Aggregated Reconstruction of Cycles of Carbon and its Isotopes', Tellus 48B, 583-600.Google Scholar
  73. Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: 2000, 'Radiative Forcings and Global Warming Potentials of 39 Greenhouse Gases', J. Geophys. Res. 105, 20773-20790.Google Scholar
  74. Jamieson, D.: 1996, 'Ethics and Intentional Climate Change', Clim. Change 33, 323-336.Google Scholar
  75. Johansson, T. B., Williams, R. H., Ishitani, H., and Edmonds, J. A.: 1996, 'Options for Reducing CO2 Emissions from the Energy Sector', Energy Policy 24, 985-1003.Google Scholar
  76. Kessler, J., Schillo, B., Shelby, M., and Haspel, A.: 1994, 'Is Natural Gas Really the Answer? Targeting Natural Gas in U.S. Climate Change Mitigation Policy', Energy Policy 22, 623-628.Google Scholar
  77. Kheshgi, H. S., Jain, A. K., and Wuebbles, D. J.: 1996, 'Accounting for the Missing Carbon-Sink with the CO2-Fertilization Effect', Clim. Change 33, 31-62.Google Scholar
  78. Kheshgi, H. S., Jain, A. K., Kotamarthi, V. R., and Wuebbles, D. J.: 1999a, 'Future Atmospheric Methane Concentrations in the Context of the Stabilization of Greenhouse Gas Concentrations', J. Geophys. Res. 104, 19183-19190.Google Scholar
  79. Kheshgi, H. S., Jain, A. K., and Wuebbles, D. J.: 1999b, 'Model-Based Estimation of the Global Carbon Budget and its Uncertainty from Carbon Dioxide and Carbon Isotope Records', J. Geophys.Res. 104, 31,127-31,144.Google Scholar
  80. Kiehl, J. T. and Briegleb, B. P.: 1993, 'The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing', Science 260, 311-314.Google Scholar
  81. Kiehl, J. T., Schneider, T. L., Rasch, P. J., Barth, M. C., and Wong, J.: 2000, 'Radiative Forcing Due to Sulfate Aerosols from Simulations with the National Center for Atmospheric Research Community Climate Model, Version 3', J. Geophys. Res. 105, 1441-1457.Google Scholar
  82. Kirchgessner, D. A.: 2000, 'Fossil Fuel Industries', in Khalil, M. A. K. (ed.), Atmospheric Methane: Its Role in the Global Environment, Springer-Verlag, New York, pp. 263-279.Google Scholar
  83. Kirchgessner, D. A., Piccot, S. D., and Winkler, J. D.: 1993, 'Estimate of Global Methane Emissions from Coal Mines', Chemosphere 26, 453-472.Google Scholar
  84. Law, K. S. and Nisbet E. G.: 1996, 'Sensitivity of the CH4 Growth Rate to Changes in CH4 Emissions from Natural Gas and Coal', J. Geophys. Res. 101, 14387-14397.Google Scholar
  85. Lefohn, A. S., Husar, J. D., and Husar, R. B.: 1999, 'Estimating Historical Anthropogenic Global Sulfur Emission Patterns for the Period 1850-1990', Atmos. Environ. 33, 3435-3444.Google Scholar
  86. Lelieveld, J., Crutzen, P. J., and Brühl, C.: 1993, 'Climate Effects of Atmospheric Methane', Chemosphere 26, 739-768.Google Scholar
  87. Lelieveld, J., Crutzen, P., and Dentener, F.: 1998, 'Changing Concentration, Lifetime and Climate Forcing of Atmospheric Methane', Tellus 50B, 128-150.Google Scholar
  88. Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H.: 1996, 'A Global Three-Dimensional Model Study of Carbonaceous Aerosols', J. Geophys. Res. 101, 19411-19432.Google Scholar
  89. Logan, J. and Luo, D.: 1999, 'Natural Gas and China's Environment', presented at IEA-China Natural Gas Industry Conference, November 10, 1999.Google Scholar
  90. Malek, A. I.: 1997, CoChill: A Model for Evaluating Trigeneration Options, M. Eng. Thesis, University of Toronto, Toronto.Google Scholar
  91. Mitchell, C.: 1993, 'Methane Emissions from the Coal and Natural Gas Industries in the U.K.', Chemosphere 26, 441-446.Google Scholar
  92. Moomaw, W. R. and Moreira, J. R.: 2001, Chapter 3: Technological and Economic Potential of Greenhouse Gas Emissions Reductions, IPCC Working Group III Third Assessment Report, Cambridge University Press, Cambridge, U.K.Google Scholar
  93. Morgan, M. G. and Keith, D. W.: 1995, 'Subjective Judgements by Climate Experts', Environ. Sci. Technol. 29, 468-476A.Google Scholar
  94. Myhre, G., Stordal, F., Restad, K., and Isaksen, I. S. A.: 1998, 'Estimates of the Direct Radiative Forcing Due to Sulfate and Soot Aerosols', Tellus 50B, 463-477.Google Scholar
  95. Mylona, S.: 1996, 'Sulphur Dioxide Emissions in Europe 1880-1991 and their Effect on Sulphur Concentrations and Depositions', Tellus 48B, 662-689.Google Scholar
  96. Nakicenovic, N.: 2000, 'Global Prospects and Opportunities for Methane in the 21st Century', presented at IGU Special Natural Gas Event, UNFCCC COP6, The Hague, The Netherlands, November 16, 2000.Google Scholar
  97. National Research Council (NRC): 1998, Decade-to-Century-Scale Climate Variability and Change: A Science Strategy, National Academy Press, Washington, D.C.Google Scholar
  98. National Research Council (NRC): 2001, Climate Change Science: An Analysis of Some Key Questions, National Academy Press, Washington, D.C.Google Scholar
  99. Oak Ridge (ORNL), Laurence Berkeley, Argonne, National Renewable Energy and Pacific Northwest National Laboratories: 1997, Potential Impacts of Energy-Efficient and Low-Carbon Technologies by 2010 and Beyond, LBNL-40533 or ORNL/CON-444.Google Scholar
  100. Pan, W., Tatang, M. A., McRae, G. J., and Prinn, R. G.: 1997, 'Uncertainty Analysis of Direct Radiative Forcing by Anthropogenic Sulfate Aerosols', J. Geophys. Res. 102, 21915-21924.Google Scholar
  101. Pan, W., Tatang, M. A., McRae, G. J., and Prinn, R. G.: 1998, 'Uncertainty Analysis of Indirect Radiative Forcing by Anthropogenic Sulfate Aerosols', J. Geophys. Res. 103, 3815-3823.Google Scholar
  102. Penner, J. E., Chuang, C. C., and Grant, K.: 1998, 'Climate Forcing by Carbonaceous and Sulfate Aerosols', Clim. Dyn. 14, 839-851.Google Scholar
  103. Princiotta, F. T.: 1990, 'Pollution Control for Utility Power Generation, 1990 to 2020', in Tester, J. W., Wood, D. O., and Ferrari, N. A. (eds.), Energy and the Environment in the 21st Century, MIT Press, Cambridge, MA.Google Scholar
  104. Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E., and Benkovitz, C. M.: 2000, 'A Description of the Global Sulfur Cycle and its Controlling Processes in the National Center for Atmospheric Research Community Climate Model, Version 3', J. Geophys. Res. 105, 1367-1385.Google Scholar
  105. Reader, M. C. and Boer, G. J.: 1998, 'The Modification of Greenhouse Gas Warming by the Direct Effect of Sulphate Aerosols', Clim. Dyn. 14, 593-607.Google Scholar
  106. Saghafi, A., Williams, D. J., and Lama, R. D.: 1997, 'Worldwide Methane Emissions from Underground Coal Mining', in Proceedings of the 6th International Mine Ventilation Congress, Pittsburgh, PA, pp. 441-445.Google Scholar
  107. Slanina, J., Warneck, P., Bazhin, N. M., Akimoto, H., Kieskamp, W. M., Khalil, M. A. K., Calvert, J. G., Matthews, E., Barrie, L., Wahlen, M., Schwartz, S. E., Tang, X., and Singh, O. N.: 1994, 'Assessment of Uncertainties in the Projected Concentrations of Methane in the Atmosphere (Technical Report)', Pure Appl. Chem. 66, 137-200.Google Scholar
  108. Schneider, S. H.: 1996, 'Geoengineering: Could — or Should — We Do It?', Clim. Change 33, 291-302.Google Scholar
  109. Shine, K. P. and Forster, P. M. de F.: 1999, 'The Effect of Human Activity on Radiative Forcing of Climate Change: A Review of Recent Developments', Global Plan. Change 20, 205-225.Google Scholar
  110. Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: 2001, 'Attribution of Twentieth Century Temperature Change to Natural and Anthropogenic Causes', Clim. Dyn. 17, 1-21.Google Scholar
  111. Taylor, K. E. and Penner, J. E.: 1994, 'Response of the Climate System to Atmospheric Aerosols and Greenhouse Gases', Nature 369, 734-737.Google Scholar
  112. Tie, X. X. and Mroz, E. J.: 1993, 'The Potential Changes of Methane Due to an Assumed Increased Use of Natural Gas: A Global Three-Dimensional Model Study', Chemosphere 26, 769-776.Google Scholar
  113. Tubiello, F. N. and Oppenheimer, M.: 1995, 'Impulse-Response Functions and Anthropogenic CO2', Geophys. Res. Lett. 22, 413-416.Google Scholar
  114. Watson, R. T., Zinyowera, M. C., and Moss, R. H.: 1996, Technologies, Policies and Measures for Mitigating Climate Change: IPCC Technical Paper I, Intergovernmental Panel on Climate Change, Cambridge, U.K.Google Scholar
  115. West, J. J., Hope, C., and Lane, S. N.: 1997, 'Climate Change and Energy Policy: The Impacts and Implications of Aerosols', Energy Policy 25, 923-939.Google Scholar
  116. West, J. J., Pilinis, Christodoulos, Nenes, Athanasios, Pandis, and Spyros, N.: 1998, 'Marginal Direct Climate Forcing by Atmospheric Aerosols', Atmos. Environ. 32, 2531-2542.Google Scholar
  117. Wigley, T. M. L.: 1991, 'Could Reducing Fossil-Fuel Emissions Cause Global Warming?', Nature 349, 503-506.Google Scholar
  118. Wigley, T. M. L., Jaumann, P. J., Santer, B. D., and Taylor, K. E.: 1998, 'Relative Detectability of Greenhouse-Gas and Aerosol Climate Change Signals', Clim. Dyn. 14, 781-790.Google Scholar
  119. World Meteorological Organization (WMO): 1999, Scientific Assessment of Ozone Depletion, WMO, Geneva, Report 44.Google Scholar
  120. Wuebbles, D. J., Hayhoe, K. A. S., and Kotamarthi, R.: 2000, 'Methane in the Global Environment', in Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change, Springer-Verlag, New York, pp. 304-342.Google Scholar
  121. Xueyi, L.: 2000, 'The Characteristics of CH4 Emission Sources in China's Energy Activities and the Ways to Reduce CH4 Emissions', in Proceedings of the Second International Methane Mitigation Conference, Novosibirsk, Russia, June 2000, www.ergweb.com/methane.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Katharine Hayhoe
    • 1
  • Haroon S. Kheshgi
    • 2
  • Atul K. Jain
    • 1
  • Donald J. Wuebbles
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of IllinoisUrbanaU.S.A.
  2. 2.Corporate Strategic ResearchExxonMobil Research and Engineering CompanyAnnandaleU.S.A

Personalised recommendations