Journal of Atmospheric Chemistry

, Volume 42, Issue 1, pp 289–321 | Cite as

Ozone and PAN Formation Inside and Outside of the Berlin Plume – Process Analysis and Numerical Process Simulation

  • U. Corsmeier
  • N. Kalthoff
  • B. Vogel
  • M.-U. Hammer
  • F. Fiedler
  • Ch. Kottmeier
  • A. Volz-Thomas
  • S. Konrad
  • K. Glaser
  • B. Neininger
  • M. Lehning
  • W. Jaeschke
  • M. Memmesheimer
  • B. Rappenglück
  • G. Jakobi
Article

Abstract

During the BERLIOZ field phase on 20 July 1998 a 40 km wide ozone-plume 30 to 70 km north of Berlin in the lee of the city was detected. The ozone mixing ratio inside the plume was app. 15 ppb higher than outside, mainly caused by high ozone precursor emissions in Berlin, resulting in a net chemical ozone production of 6.5 ppb h−1, which overcompensates ozone advection of –3.6 ppb h−1 andturbulent diffusion of –1.1 ppb h−1. That means, although moreozone leaves the control volume far in the lee of Berlin than enters it at the leeside cityborder and although turbulent diffusion causes a loss of ozone in the leeside control volume the chemical production inside the volume leads to a net ozone increase. Using a semi-Lagrangian mass budget method to estimate the net ozone production, 5.0 ppb h−1 are calculated for theplume. This means a fraction of about 20% of ozone in the plume is producedby local emissions, therefore called `home made' by the Berlin emissions. For the same area KAMM/DRAIS simulations using an observation based initialisation, results in a net production rate between 4.0 and 6.5 ppbh−1, while the threefold nested EURAD model gives 6.0 ppbh−1. The process analysis indicates in many cases goodagreement (10% or better) between measurements and simulations not only in the ozone concentrations but also with respect to the physical and chemical processes governing the total change. Remaining differences are caused by different resolution in time and space of the models and measurements as well as by errors in the emission calculation.The upwind-downwind differences in PAN concentrations are partly similar to those of ozone, because in the BERLIOZ case they are governed mainly by photochemical production. While in the stable boundary layer at night and windward of Berlin 0.1 to 0.3 ppb are detected, in the centre of the plume at noon concentrations between 0.75 ppb and 1.0 ppb are measured. The O3/PAN ratio is about 80 to 120 and thus due to the relatively lowPAN concentrations significantly higher than found in previous studies. The low PAN formation on 20 July, was mainly restricted by the moderate nonmethane hydrocarbon levels, whereas high PAN concentrations of 3.0 ppb on 21 July, are caused by local production in the boundary layer and by large scale advection aloft.

city plume ozone formation PAN formation airborne measurements process studies numerical simulations anthropogenic precursor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affre, Ch., Carrara, F., Lefebre, F., Druilhet, J., Fontan, J., and Lopez, A., 1999: Aircraft measurement of ozone turbulent flux in the atmospheric boundary layer, Atmos. Environ. 33, 1561–1574.Google Scholar
  2. Andersson, S. and Steinhagen, H., 2000: Untersuchungen zur Dynamik der atmosphärischen Grenzschicht und von Vertikalverteilungen ausgewählter Spurenstoffe mit Hilfe von Windprofiler-Radar/RASS und Fesselballonsondierungen zur Oxidantienbildung und Oxidationskapazität, Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg.Google Scholar
  3. Becker, A., Scherer, B., Memmesheimer, M., and Geiß, H., 2002: Studying the city plume of Berlin on 20 July 1998 with three different modelling approaches, J. Atmos. Chem. 42, 41–70.Google Scholar
  4. Becker, K. H., Donner, B., and Gäb, S., 1999: BERLIOZ: A field experiment within the German Tropospheric Research Program (TFS), in Proceedings of EUROTRAC Symposium 98 Band 2, WIT Press, Southhampton, pp. 669–672.Google Scholar
  5. Becker, K. H., 2000: BMBF-Verbundvorhaben Troposphärenforschung, Leitthema 3: Prozessstudien zur Oxidantienbildung und Oxidationskapazität, Zwischenbericht 1999/Endbericht, Band 2: Feldexperiment BERLIOZ; Bergische Universität — GH Wuppertal.Google Scholar
  6. Cantrell, C.A., Shetter, R.A., Calvert, J. G., Parrish, D. D., Fehsenfeld, F. C., Goldan, P.D., Kuster, W., Williams, E. J., Westberg, H. H., Allwine, G., and Martin, R., 1993: Peroxy radicals as measured in ROSE and estimated from photostationary state deviations, J. Geophys. Res. 98, 18355–18367.Google Scholar
  7. Cowling, E. B., Chameides, W. L., Kiang, C. S., Fehsenfeld, F. C., and Meagher, J. F., 1998: Introduction to special section Southern Oxidant Study Nashville/Middle Tennessee Ozone Study, J. Geophys. Res. 103, 22209–22212.Google Scholar
  8. Fehsenfeld, F. C., Trainer, M., Parrish, D. D., Volz-Thomas, A., and Penkett, S., 1996: North Atlantic Regional Experiment 1993 summer intensive: Foreword, J. Geophys. Res. 101, 28869–28875.Google Scholar
  9. Glaser, K., Baumbach, G., and Vogt, U., 2000: Vertical profiles of O3, NO2, NOx, VOC and meteorological parameters during the PHOEBE Campaign, J. Geophys. Res., in preparation.Google Scholar
  10. Godowitch, J. M., 1990: Vertical ozone fluxes and related deposition parameters over agricultural and forested landscapes, Bound.-Layer Meteor. 50, 375–404.Google Scholar
  11. Güsten, H., Heinrich, G., Schmidt, R.W. H., and Schurath, U., 1992: A novel ozone sensor for direct eddy flux measurements, J. Atmos. Chem. 14, 73–84.Google Scholar
  12. Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles Smog, Ind. Eng. Chem. 44(6), 1342–1346.Google Scholar
  13. Hammer, M.-U., 2001: Photochemische Indikatoren zur Charakterisierung der Oxidantienbildung bei Hochdruckwetterlagen, Dissertation, Inst. für Meteorol. und Klimaforsch., Universität Karlsruhe Forschungszentrum Karlsruhe.Google Scholar
  14. Hass, H., Jakobs, H. J., and Memmesheimer, M., 1995: Analysis of a regional model (EURAD) near surface gas concentration predictions using observations from networks, Meteorol. Atmos. Phys. 57, 173–201.Google Scholar
  15. Hoell, J. M., Davis, D. D., Liu, S. C., Newell, R., Shipham, M., Akimoto, H., McNeal, R. J., Bendura, R. J., and Drewry, J. W., 1996: Pacific Exploratory Mission-West (PEM-West) (a): September— October 1991, J. Geophys. Res. 101, 1641–1653.Google Scholar
  16. Imhoff, R. E., Valente, R., Meagher J. F., and Luria, M., 1995: The production of O3 in an urban plume: Airborne sampling of the Atlanta urban plume, Atmos. Environ. 29, 2349–2358.Google Scholar
  17. Jaeschke, W., Reinecke, A., and Wolf, A., 1996: The use of non petrol fuel in brazil and its potential effect on the oxidation capacity of the tropical atmosphere, in Proc. 7th Symp. on Physico-Chemical Behavior of Atmos. Pollutants, Venice, pp. 318–322.Google Scholar
  18. Kanter, H.-J., Mohnen, V. A., Volz-Thomas, A., Junkermann, W., Glaser, K., Weitkamp, C., and Slemr, F., 2002: Quality assurance in TFS for inorganic compounds, J. Atmos. Chem. 42, 235–253.Google Scholar
  19. Kourtidis, A. K., Fabian, P., Zerefos, C., and Rappenglück, B., 1993: Peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN) and PAN/ozone ratio measurements at three sites in Germany, Tellus 45, 442–457.Google Scholar
  20. Kramp, F. and Volz-Thomas, A., 1997: On the budget of OH radicals and ozone in an urban plume from the decay of C5—C8 hydrocarbons and NOx, J. Atmos. Chem. 28, 263–282.Google Scholar
  21. Kraus, A. and Hofzumahaus, A., 1998: Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, CH3CHO, H2O2 and HONO by UV spectroradiometry, J. Atmos. Chem. 31, 161–181.Google Scholar
  22. Krautstrunk, M., Neumann-Hauf, G., Schlager, H., Klemm, O., Beyrich, F., Corsmeier, U., Kalthoff, N., and Kotzian, M., 2000: An experimental study on the planetary boundary layer transport of air pollutants over East Germany, Atmos. Environ. 34, 1247–1266.Google Scholar
  23. Lehning, M., 1998: The regional pollutant budget of the atmospheric boundary layer: Concept, interpretations and observational results, Meteorol. Zeitschrift 7, 112–119.Google Scholar
  24. Lehning, M., Richner, H., Kok, G. L., and Neininger, B., 1998a: Vertical exchange and regional budgets of air pollutants over densely populated areas, Atmos. Environ. 32, 1353–1363.Google Scholar
  25. Lehning, M., Richner, H., and Kok G. L., 1998b: Transport of air pollutants from the boundary layer to the free troposphere over complex terrain, Phys. Chem. Earth 23, 667–672.Google Scholar
  26. Lehning, M., Neininger, B., Bäumle, M., Geiss, H., and Volz-Thomas, A., 2000: Mass budgets of trace gases, heat and moisture during ESQUIF and BERLIOZ using a semi-Lagrangian appoach, J. Geophys. Res., in preparation.Google Scholar
  27. Lenschow, D. H., Delany, A. C., Stankov, B. B., and Stedman, D. H., 1980: Airborne measurements of the vertical flux of ozone in the boundary layer, Bound.-Layer. Meteor. 19, 249–265.Google Scholar
  28. Lutz, H., 1995: Flugzeug-und Bodenmessungen von Ozon und Vorläuferstoffen zur Abschätzung von emissionsmindernden Maßnahmen im Großraum Berlin-Brandenburg, Senatsverwaltung für Stadtentwicklung und Umweltschutz, Berlin.Google Scholar
  29. Memmesheimer, M., Roemer, M., and Ebel, A., 1997: Budget calculations for ozone and its precursors: Seasonal and episodic features based on model simulations, J. Atmos. Chem. 28, 283–317.Google Scholar
  30. Mihelcic, D., Bächmann, K., Geyer, A., Holland, F., Hofzumahaus, A., Müsgen, P., Pätz, H. W., Platt, U., Schäfer, H. J., Schlomski, S., Schmitz, T., Konrad, S., and Volz-Thomas, A., 2000: Comparison of measurements and model calculation of OH-, HO2-, RO2-radicals and local ozone production during the BERLIOZ campaign, J. Geophys. Res., in preparation.Google Scholar
  31. Nester, K., 1995: Influence of sea breeze flows on air pollution over the Attica peninsula, Atmos. Environ. 29, 3655–3670.Google Scholar
  32. Neu, U., 1995: Ozonversuch Neckarsulm/Heilbronn — Wissenschaftliche Auswertung. Umweltministerium Baden-Württemberg.Google Scholar
  33. Obermeier, A., Friedrich, R., John, C., Seier, J., Vogel, H., Fiedler, F., and Vogel, B., 1997: Ozonproblematik im südlichen Oberrheingraben: Emissionen, Minderungsszenarien und Immissionen, Forschungszentrum Karlsruhe, Forschungsbericht FZKA-PEF 162.Google Scholar
  34. Penkett, S. A., Volz-Thomas, A., Parrish, D. D., Honrath, R. E., and Fehsenfeld, F. C., 1998: North Atlantic Regional Experiment (NARE II): Preface, J. Geophys. Res. 103, 13353–13355.Google Scholar
  35. Rappenglück, B., Jakobi, G., Fabian, P., Pesch, M., and Reimer E., 2001: Enhanced levels of PAN and ozone in the nighttime boundary layer over Berlin, Germany, prepr., in A Millenium Symposium on Atmospheric Chemistry: Past, Present and Future of Atmospheric Chemistry, 14–18.01.2001, Albuqerque, New Mexico, pp. 82–85.Google Scholar
  36. Rappenglück, B., Oyola, P., Olaeta, I., and Fabian, P., 2000: The evolution of photochemical smog in the Metropolitan Area of Santiago de Chile, J. Appl. Meteorol. 39, 275–290.Google Scholar
  37. Ridley, B. A., Shetter, J. D., Gandrug, B. W., Salas, L. J., Singh, H. B., Caroll, M. A., Hübler, G., Albritton, D. L., Hastie, D. R., Schiff, H. I., Mackay, G. I., Karechi, D. R., Davies, D. D., Bradshaw, J. D., Rodgers, M. O., Sandholm, S. T., Torres, A. L., Condon, E. P., Gregory, G. L., and Beck, S. M., 1990: Ratios of peroxyacetyl nitrate to active nitrogen observed during aircraft flights over the eastern Pacific oceans and continental United States, J. Geophys. Res. 95, 10179–10192.Google Scholar
  38. Ritter, J. A., Lenschow, D. H., Barrick, J. D. W., Gregory, G. L., Sachse, G. W., Hill, G. F., and Woerner, M. A., 1990: Airborne flux measurements and budget estimates of trace species over the Amazon basin during the GTE/ABLE 2B expedition, J. Geophys. Res. 95, 16875–16886.Google Scholar
  39. Schrimpf, W., Linaerts, K., Müller, K. P., Koppmann, R., and Rudolph, J., 1998: Peroxyacetyl nitrate (PAN) measurements during the POPCORN campaign, J. Atmos. Chem. 31, 139–159.Google Scholar
  40. Sillman, S., 1995: The use of NOy, H2O2, and HNO3 as indicators for the NOx —hydrocarbon sensitivity in urban locations, J. Geophys. Res. 100, 14175–14188.Google Scholar
  41. Steidl, N., 1999: Der Ozonhaushalt während der BERLIOZ-Meßkampagne im Großraum Berlin am 20.07.98, Diploma thesis, Universität Karlsruhe, p. 73.Google Scholar
  42. Staehelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., and Graber, W., 1994: Trends in surface ozone concentrations at Arosa (Switzerland), Atmos. Environ. 28, 75–87.Google Scholar
  43. Vogel, H., 1991: Verteilungen reaktiver Luftbeimengungen im Lee einer Stadt — Numerische Untersuchungen der relevanten Prozesse, Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Kernforschungszentrum Karlsruhe.Google Scholar
  44. Vogel, B., Vogel, H., and Fiedler, F., 1992: Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume, NASA Conf. Publ., 3266, pp. 97–100.Google Scholar
  45. Vogel, B., Fiedler, F., and Vogel, H., 1995: Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Württemberg on ozone concentrations during episodes of high air temperatures, J. Geophys. Res. 100, 22907–22928.Google Scholar
  46. Vogel, B., Hammer, M.-U., Vogel, H., Fiedler, F., 2001: Findings on H2O2/HNO3 as an indicator for ozone sensitivity in the vincinity ofMilan, Berlin and in Baden-Württemberg based on numerical simulations, J. Geophys. Res., in print.Google Scholar
  47. Volz-Thomas, A., Geiß, H., and Kalthoff, N., 2000: The Schauinsland Ozone Precursor Experiment (SLOPE96) — scientific background and main results, J. Geophys. Res. 105, 1553–1561.Google Scholar
  48. Volz, A. and Kley, D., 1988: Ozone measurements in the 19th century: An evaluation of the Montsouris series, Nature 332, 240–242.Google Scholar
  49. Wickert, B., Heidegger, A., and Friedrich, R., 2001: Calculation of emissions in Europe with CAREAIR, in P. J. Midgley et al. (eds), Proceedings of the EUROTRAC Symposium 2000, Springer Verlag, Berlin, Heidelberg, in print.Google Scholar
  50. Winkler, J., Blank, P., Glaser, K., Gomes, J. A. G., Habram, M., Jambert, C., Jaeschke, W., Konrad, S., Kurtenbach, R., Lenschow, P., Lörzer, J. C., Perros, P. E., Pesch, M., Prümke, H. J., Rappenglück, B., Schmitz, Th., Slemr, F., Volz-Thomas, A., and Wickert, B., 2002: Ground-based and airborne measurements of nonmethane hydrocarbons in BERLIOZ: Analysis and selected results, J. Atmos. Chem. 42, 465–492.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • U. Corsmeier
    • 1
  • N. Kalthoff
    • 1
  • B. Vogel
    • 1
  • M.-U. Hammer
    • 1
  • F. Fiedler
    • 1
  • Ch. Kottmeier
    • 1
  • A. Volz-Thomas
    • 2
  • S. Konrad
    • 2
  • K. Glaser
    • 3
  • B. Neininger
    • 4
  • M. Lehning
    • 5
  • W. Jaeschke
    • 6
  • M. Memmesheimer
    • 7
  • B. Rappenglück
    • 8
  • G. Jakobi
    • 8
  1. 1.Institut für Meteorologie und Klimaforschung (IMK)Forschungszentrum Karlsruhe/Universität KarlsruheKarlsruheGermany
  2. 2.Institut für Chemie der Belasteten Atmosphäre (ICG2)Forschungszentrum JülichGermany
  3. 3.Institut für Verfahrenstechnik und Dampfkesselwesen (IVD)Universität StuttgartGermany
  4. 4.MetAir AGMenzingenSwitzerland
  5. 5.Institut für Schnee- und LawinenforschungDavos DorfSwitzerland
  6. 6.Zentrum für Umweltforschung (ZUF)Universität FrankfurtGermany
  7. 7.Förderverein des Rheinischen Instituts für UmweltforschungUniversität zu KölnGermany
  8. 8.Lehrstuhl für Bioklimatologie und ImmissionsforschungTechnische Universität MünchenGermany

Personalised recommendations