Journal of Mammary Gland Biology and Neoplasia

, Volume 7, Issue 1, pp 67–76

Timing of Exposure and Mammary Cancer Risk

  • Coral A. Lamartiniere


We have tested the hypothesis that timing of exposure to hormonally active chemicals can predetermine susceptibility for mammary cancer. TCDD, the most potent man-made xenobiotic, when given to pregnant rats resulted in the offspring being more susceptible to chemically induced mammary cancer as adults. On the other hand, genistein, the primary isoflavone component of soy, given in the diet during the prepubertal period, or the prepubertal and adult periods, protected against chemically induced mammary cancer. There was an inverse relationship between cancer susceptibility and mammary gland differentiation. The initial effect of early exposure to genistein was to up-regulate the EGF-signaling pathway and to enhance cell differentiation, resulting in reduced EGF-receptor expression in mammary terminal end buds of adults. Genistein has been shown to be bioavailable to the mammary gland in postnatal rats. Differentiation effects are believed to occur via an imprinting mechanism that determines the “blueprint” from which the mammary cells respond to future hormonal and/or xenobiotic exposure.

timing genistein TCDD mammary cancer bioavailability differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Colditz and A. L. Frazier (1995). Models of cancer show that risk is set by events of early life Prevention efforts must shift focus. Cancer Epi.Biomark.Prev. 4567–571.Google Scholar
  2. 2.
    P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki (2000). Environmental and heritable factors inthe causation of cancer Analysis of cohorts of twins from Sweden, Denmark, and Finland. New Eng.J.Med. 34378–84.PubMedGoogle Scholar
  3. 3.
    M. Kuratsuna, M. Imeda, Y. Nahamura, and T. Hirohata (1987). A cohort study on morality of Yusho patients A preliminaryreport. Int.Symp.Princess Takamutsa Cancer Res.Fund 1861–66.Google Scholar
  4. 4.
    A. Manz, J. Berger, J. H. Dwyer, D. Flesch-Janys, S. Nagel, and H. Waltsgott (1991). Cancer morality among workers in achemical plant contaminated with dioxin. Lancet 338959–964.PubMedGoogle Scholar
  5. 5.
    P. A. Bertazz, C. Zoccheti, A. C. Pesatori, S. Guercilena, M. Sanarico, and L. Radice (1989). Ten-year morality study ofthe population invovled in the Seveso incident of 1976. Amer.J.Epidemiol. 1291187–1200.Google Scholar
  6. 6.
    W. J. Nicholson, H. Siedman, and I. J. Selikoff (1987). Moralityexperience of workers exposed to polychlorinated biphenyls during maufacture of electrical capacitors. Report to the industrial disease standards panel, Ontario Ministry of Labor, Ontario.Google Scholar
  7. 7.
    M. S. Wolff, P. G. Toniolo, E. W. Lee, M. Rivera, and N. Dubin (1993). Blood levels of organo chlorine residues and risk of breast cancer. J.Natl.Cancer Inst. 85648–652.PubMedGoogle Scholar
  8. 8.
    N. Krieger, M. S. Wolff, R. A. Hiatt, M. Rivera, J. Vogelman, and N. Orentreich (1994). Breast cancer and serum organo chlorines A prospective study among White, Black, and Asian women. J.Natl.Cancer Inst. 86589–599.PubMedGoogle Scholar
  9. 9.
    A. A. Jensen and S. A. Slorach (1991). Chemical Contaminantsin Human Milk, CRC Press, Boston.Google Scholar
  10. 10.
    J. D. Boice and R. R. Monson (1977). Breast cancer in women after repeated fluoroscopic examinations of the chest. J.Natl.Cancer Inst. 59823–832.PubMedGoogle Scholar
  11. 11.
    C. E. Land and D. H. McGregor (1979). Breast cancer incidence among atomic bomb survivors Implications for radio biologic risk at low doses. J.Natl.Cancer Inst. 6217–21.PubMedGoogle Scholar
  12. 12.
    A. L. Herbst and R. E. Scully (1970). Adenocarcinoma of thevagina in adolescence A report of 7 cases including 6 clear cell carcinomas (so called mesonephromas). Cancer Res. 25745–757.Google Scholar
  13. 13.
    J. A. McLachlan, R. R. Newbold, and B. C. Bullock (1980). Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 403988–3999.PubMedGoogle Scholar
  14. 14.
    E. S. Boylan and R. E. Calhoon (1979). Mammary tumori-genesisin the rat following prenatal exposure to diethyl-stilbestroland postnatal treatment with 7,12-dimethylbenz(a)-anthracene. J.Toxicol.Environ.Health 51059–1071.PubMedGoogle Scholar
  15. 15.
    C. A. Lamartiniere and M. B. Holland (1992). Neonatal di-ethylstilbestrolprevents spontaneously developing mammary tumors. In J. J. Li, S. Nandi, and S. A. Li (eds.), Proceedingsof First International Symposium on Hormonal Carcinogens, Springer, New York, pp. 305–308.Google Scholar
  16. 16.
    C. J Shellabarger and V. A. Soo (1973). Effects of neonatally administered sex steroids on 7,12-dimethylbenz(a) anthracene-induced mammary neoplasia in rats. Cancer Res. 33(7) 1567–1569.PubMedGoogle Scholar
  17. 17.
    H. Nagasawa, R. Yanai, M. Shodono, T. Nakamura, and Y. Tanabe (1974). Effect of neonatally administered estrogenor prolactin on normal and neoplastic mammary growth and serum estradiol-17 beta level in rats. Cancer Res. 34(10)2643–2646.PubMedGoogle Scholar
  18. 18.
    J. Russo and I. H. Russo (1978). DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J.Natl.Cancer Inst. 611451–1459.PubMedGoogle Scholar
  19. 19.
    C. W. Welsh (1985). Host factors affecting the growthof carcinogen-induced rat mammary carcinomas A reviewand tribute to Charles Brenton Huggins. Cancer Res. 453415–3443.PubMedGoogle Scholar
  20. 20.
    C. J. Grubbs, J. C. Peckman, and K. D. Cato (1983). Mammary carcinogenesis in rats in relation to age at time of N-nitroso-N-methylureaadministration. J.Natl.Cancer Inst. 70209–212.PubMedGoogle Scholar
  21. 21.
    C. J. Grubbs, D. L. Hill, K. C. McDonough, and J. C. Peckman(1983). N-nitroso-N-methylurea-induced mammary carcino-genesis Effect of pregnancy on preneoplastic cells. J.Natl.Cancer Inst. 71625–628.PubMedGoogle Scholar
  22. 22.
    C. J. Grubbs, D. R. Farnell, D. L. Hill, and K. C. McDonough(1985). Chemoprevention of N-nitroso-N-methylurea-inducedmammary cancers by pretreatment with 17 beta-estradiol andprogesterone. J.Natl.Cancer Inst. 74927–931.PubMedGoogle Scholar
  23. 23.
    R. C. Moon (1969). Relationship between previous reproductive history and chemically induced mammary cancer in rats. Int.J.Cancer 4312–317.PubMedGoogle Scholar
  24. 24.
    I. H. Russo and J. Russo (1978). Developmental stage of therat mammary gland as determinant of its susceptibility to 7,12-dimethylbenzanthracene. J.Natl.Cancer Inst. 611439–1449.PubMedGoogle Scholar
  25. 25.
    J. Russo, G. Wilgu, and I. H. Russo (1979). Susceptibility ofthe mammary gland to carcinogenesis. I. Differentiation of themammary gland as determinant of tumor incidence and typeof lesion. Am.Pathol. 96721–736.Google Scholar
  26. 26.
    C. J. Grubbs, M. M. Juliana, D. L. Hill, and L. M. Whitaker(1986). Suppression by pregnancy of chemically-induced pre-neoplasticcells of the rat mammary gland. Anticancer Res. 61395–1400.PubMedGoogle Scholar
  27. 27.
    N. Nagasawa, R. Yanai, and H. Taniguchi (1976). Importance ofmammary gland DNA synthesis on carcinogen induced mam-marytumorigenesis in rats. Cancer Res. 362223–2226.PubMedGoogle Scholar
  28. 28.
    E. K. Dawson (1934). Histological study of normal mammain relation to tumor growth Early development to maturity. Edinburgh Med.J. 41653–682.Google Scholar
  29. 29.
    J. Russo and I. H. Russo (1987). Biology of disease. Biologicaland molecular basis of mammary carcinogenesis. Lab.Invest. 57112–137.PubMedGoogle Scholar
  30. 30.
    I. H. Russo and J. Russo (1996). Mammary gland neoplasia inlong-term rodent studies. Environ.Health Perspect. 104938–967.PubMedGoogle Scholar
  31. 31.
    H. Ingleby and J. Gershon-Cohen (eds.) (1960). Comparative anatomy, pathology and roentgenology of the breast. University of Pennsylvania Press, Philadelphia.Google Scholar
  32. 32.
    J. S. Meyer (1977). Cell proliferation in normal human breastducts, fibroadenomas, and other ductal hyperplasias measuredby nuclear labeling with tritiated thymidine. Effects of men-strualphase age, and oral contraceptive hormones. Hum.Pathol. 861–81.Google Scholar
  33. 33.
    B. MacMahon, P. Cole, and J. Brown (1973). Endocrinology andepidemiology of breast cancer. J.Natl.Cancer Inst. 5021–42.PubMedGoogle Scholar
  34. 34.
    I. H. Russo, M. Koszalka, and J. Russo (1990). Effect of humanchorionic gonadotrophins on mammary gland differentiationand carcinogenesis. Carcinogenesis 111849–1855.PubMedGoogle Scholar
  35. 35.
    C. A. Lamartiniere, J. B. Moore, N. M. Brown, R. Thompson, M. J. Hardin, and S. Barnes (1995). Genistein suppressesmammary cancer in rats. Carcinogenesis 162833–2840.PubMedGoogle Scholar
  36. 36.
    W. B. Murrill, N. M. Brown, P. A. Manzolillo, J. X. Zhang,S. Barnes, and C. A. Lamartiniere (1996). Prepubertal genis-teinexposure suppresses mammary cancer and enhances glanddifferentiation in rats. Carcinogenesis 171451–1457.PubMedGoogle Scholar
  37. 37.
    C. A. Lamartiniere, J. X. Zhang, and M. S. Cotroneo (1998). Genistein studies in the rat Potential for breast cancer prevention, and reproductive and developmental toxicology. Amer.J.Clin.Nutr. 1681400S–1405S.Google Scholar
  38. 38.
    C. A. Lamartiniere, W. B. Murrill, P. A. Manzolillo, J. X. Zhang,S. Barnes, X. Zhang, H. Wei, and N. M. Brown (1998). Genisteinalters the ontogeny of mammary gland development and protects against mammary cancer in rats. Proc.Soc.Exper.Biol.Med. 217358–364.Google Scholar
  39. 39.
    W. A. Fritz, L. Coward, J. Wang, and C. A. Lamartiniere (1998). Dietary genistein Perinatal mammary cancer prevention,bioavailability and toxicity testing in the rat. Carcinogenesis 192151–2158.PubMedGoogle Scholar
  40. 40.
    C. A. Lamartiniere and J. Wang (1999). Genistein Breast cancer protection and in vivo mechanisms of action. J.Med.Food 2151–157.Google Scholar
  41. 41.
    C. A. Lamartiniere, Y. X. Zhao, and W. A. Fritz (2000). Genistein Mammary cancer chemoprevention, in vivo mechanismsof action, potential for toxicity, and bioavailability in rats. J.Women's Cancer 211–19.Google Scholar
  42. 42.
    C. A. Lamartiniere (2000). Protection against breast cancer with geniste in A component of soy. Amer.J.Clin.Nutr. 711S–3S.Google Scholar
  43. 43.
    N. M. Brown and C. A. Lamartiniere (1995). Xenoestrogen salter mammary gland differentiation and cell proliferation. Environ.Health Perspec. 103708–713.Google Scholar
  44. 44.
    N. M. Brown, P. A. Manzolillo, J. X. Zhang, J. Wang, and C. A. Lamartiniere (1998). Prenatal TCDD and predisposition for mammary cancer. Carcinogenesis 191623–1629.PubMedGoogle Scholar
  45. 45.
    M. Holcomb and S. Safe (1994). Inhibition of 7,12-dimethylbenz(a)-anthracene-induced rat mammary tumor growth by 2,3,7,8-tetrachlordibenzo-p-dioxin. Cancer Letters 8243–47.PubMedGoogle Scholar
  46. 46.
    L. E. Gray and J. S. Ostby (1995). In Utero 2,3,7,8-tetrachlodibenzo-p-dioxin (TCDD) alters reproductive morphology and function in female rat offspring. Toxicol.Appl.Pharmacol. 133285–294.PubMedGoogle Scholar
  47. 47.
    J. F. Gierthy, D. W. Lincoln, S. J. Kampcik, H. W. Dickerman,N. L. Bradlow, T. Niwa, and G. E. Swaneck (1988). Enhance-mentof 2-and 16-ß estradiol hydroxylation in MCF-7 humanbreast cancer cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem.Biophys.Res.Commun. 157515–520.PubMedGoogle Scholar
  48. 48.
    L. Biegel and S. Safe (1990). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell growth andthe secretion of the estrogen induced-34-, 52-, and 160-kDaproteins in human breast cancer cells. J.Steroid Biochem.Mol.Biol. 37725–732.PubMedGoogle Scholar
  49. 49.
    K. T. Shiverick and T. F. Muther (1983). TCDD effects on hepatic microsomal steroid metabolism and serum estradiol of pregnant rats. Biochem.Pharmacol. 32991–995.PubMedGoogle Scholar
  50. 50.
    C. L. Chaffin, R. E. Peterson, and R. J. Hutz (1996). In utero and lactational exposure of female Holtzman rats to TCDD Modulation of the estrogen receptor. Biol.Reprod. 5562–67.PubMedGoogle Scholar
  51. 51.
    H. P. Lee, L. Gourley, S. W. Duffy, J. Esteve, J. Lee, and N. E. Day (1991). Dietary effects on breast cancer risk in Singapore. Lancet 3361197–1200.Google Scholar
  52. 52.
    R. G. Ziegler, R. N. Hoover, R. N. Hildeshein, M. Y. Nomura, M. C. Pike, D. W. West, A. Wu-Williams, L. N. Kolonel, P. L. Horn-Ross, J. F. Rosenthal, and M. B. Hyer (1993). Migration patterns and breast cancer risk in Asian-American women. J.Natl.Cancer Inst. 851819–1827.PubMedGoogle Scholar
  53. 53.
    H. Adlercreutz, H. Honjo, A. Higashi, T. Fotsis, E. Hamaten, T. Hasegawa, and H. Okada (1991). Urinary excretion of lignins and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional diet. Amer.J.Clin.Nutr. 541093–1100.PubMedGoogle Scholar
  54. 54.
    L. Hilakivi-Clarke, I. Onojafe, M. Raygada, E. Cho, T. Skaar, I. Russo, and R. Clarke (1999). Prepubertal exposure to zear-alenoneor geniste in reduces mammary tumorigenesis. BritishJ.Cancer 801682–1688.Google Scholar
  55. 55.
    R. A. Gorski (1974). The neuro endocrine regulation of sexual behavior. In Advances in Psychobiology, Vol. 2, Wiley, New York, pp. 1–58.Google Scholar
  56. 56.
    C. A. Lamartiniere, C. A. Sloop, J. Clark, H. A. Tilson, and G. W. Lucier (1982). Organizational effects of hormones andhormonally-active xenobiotics on postnatal development. In 12th Conference on Environmental Toxicology, Dayton, Ohio, U.S. Air Force Publication AFAMRL-TR-81–149, pp. 96–121.Google Scholar
  57. 57.
    L. Hilakivi-Clarke, E. Cho, I. Onojafe, M. Raygada, and R. Clarke (1999). Maternal exposure to genistein during pregnancy increases carcinogen induced mammary tumor igenesis in female rat offspring. Oncol.Rep. 61089–1095.PubMedGoogle Scholar
  58. 58.
    M. S. Cotroneo and C. A. Lamartiniere (2001). Pharmacologic, but not dietary geniste in supports endometriosis in a rat model. Toxicol.Sci. 6168–75.PubMedGoogle Scholar
  59. 59.
    A. A. Franke and L. J. Custer (1996). Daidzein and geniste in concentrations in human milk after soy consumption. Clin.Chem. 42955–964.PubMedGoogle Scholar
  60. 60.
    H. Adlercreutz, H. Markkanen, and S. Watanabe (1993). Plasma concentrations of phytoestrogens in Japanese men. Lancet 3421209–1210.PubMedGoogle Scholar
  61. 61.
    L. Denis, M. S. Morton, and K. Griffiths (1999). Diet and its preventive role in prostatic disease. Eur.Urol. 35377–387.PubMedGoogle Scholar
  62. 62.
    K. D. R. Setchell, L. Zimmer-Nechemias, J. Cai, and J. E. Heubi(1997). Exposure of infants to phyto-estrogens from soybased infant formula. Lancet 35023–27.PubMedGoogle Scholar
  63. 63.
    K. M. Flynn, S. A. Ferguson, K. B. Delclos, and R. R. Newbold (2000). Effects of geniste in exposure on sexually dimorphic behaviors in rats. Tox.Sci. 55311–319.Google Scholar
  64. 64.
    K. M. Flynn, S. A. Ferguson, K. B. Delclos, and R. R. Newbold (2000). Neurotox. 21997–1002.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Coral A. Lamartiniere
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirmingham

Personalised recommendations