Journal of Atmospheric Chemistry

, Volume 42, Issue 1, pp 207–233 | Cite as

Evaluation of Modeled Spatially and Temporarily Highly Resolved Emission Inventories of Photosmog Precursors for the City of Augsburg: The Experiment EVA and Its Major Results

  • F. Slemr
  • G. Baumbach
  • P. Blank
  • U. Corsmeier
  • F. Fiedler
  • R. Friedrich
  • M. Habram
  • N. Kalthoff
  • D. Klemp
  • J. Kühlwein
  • K. Mannschreck
  • M. Möllmann-Coers
  • K. Nester
  • H.-J. Panitz
  • P. Rabl
  • J. Slemr
  • U. Vogt
  • B. Wickert
Article

Abstract

Emission inventories of NOx, CO, and individual volatile organic compounds (VOC), highly resolved in space and time, belong to the most important input parameters for chemistry and transport models (CTM) used for ozone prediction. Because of the decisive influence of the input quality on the outcome of CTM simulations, the quality of emission inventories has to be assessed. This paper presents an experimental evaluation of the highly resolved emission inventories for the city of Augsburg. The emissions of the city, determined in March and October 1998 using mass balance and tracer techniques, and derived from the measured receptor concentration ratios, were compared with emissions modeled from an emission inventory. The modeled CO emissions were in agreement with the measured ones within the combined experimental and model uncertainties. More detailed CO emission model simulations suggest that the tendency of calculated CO emissions being smaller than the measured ones may be due to higher traffic activity in Augsburg. Modeled NOx emissions were in agreement with the measured ones within the combined experimental and model uncertainties. Large deviations between modeled and measured values have been found for some individual NMHC compounds. The measured NMHC emission fingerprints were dominated by mobile sources. Substantial model predicted NMHC emissions from the solvent use could not be detected by measurements suggesting that they may not be correctly represented by the emission model.

emission model inventory CO NOx NMHC measurement intercomparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, G. and Fiedler, F., 1991: Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations, Contr. Atmos. Phys. 64, 27–48.Google Scholar
  2. Baer, M. and Nester, K., 1992: Parametrization of trace gas dry deposition velocities for a regional mesoscale diffusion model, Ann. Geophysicae 10, 912–923.Google Scholar
  3. Baumbach, G. and Vogt, U., 1995: A tethered balloon measurement system for the determination of the spatial and temporal distribution of air pollutants such as O3, NO2, VOC, particles and meteorological parameters, Eurotrac Newsletter 16, 23–29.Google Scholar
  4. Bergin,M. S., Noblet, G. S., Petrini, K., Dhieux, J. R., Milford, J. B., and Harley, R. A., 1999: Formal uncertainty analysis of a Lagrangian photochemical air pollution model, Environ. Sci. Technol. 33, 1116–1126.Google Scholar
  5. Eickhoff, W., 1998: Emissionen organisch-chemischer Verbindungen aus zivilen Flugzeugtriebwerken, Hessische Landesanstalt für Umwelt, Kassel.Google Scholar
  6. EPA, 1995: Compilation of Air Pollutant Emission Factors, 5th Edition, Research Triangle Park NC 27711.Google Scholar
  7. Fujita, E. M., Watson, J. G., Chow, J. C., and Magliano, K. L., 1995: Receptor model and emission inventory source apportionments of nonmethane organic gases in California's San Joaquin Valley and San Francisco Bay area, Atmos. Environ. 29, 3019–3035.Google Scholar
  8. Fujita, E. M., Watson, J. G., Chow, J. C., and Lu, Z., 1994: Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California Air Quality Study, Environ. Sci. Technol. 28, 1633–1649.Google Scholar
  9. Hanna, S. R., Chang, J. C., and Fernau, M. E., 1998: Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-iV) due to uncertainties in input variables, Atmos. Environ. 32, 3619–3628.Google Scholar
  10. Jacobeit, J., 1986: Stadtklimatologie von Augsburg unter besonderer Berücksichtigung der lufthygienischen Situation sowie des Lärms, Augsburger Geographische Hefte Nr. 6, Lehrstuhl für Physische Geographie der Universität Augsburg.Google Scholar
  11. Jiang, W., Singleton, D. L., Hedley, M., and McLaren, R., 1997: Sensitivity of ozone concentrations to VOC and NOx emissions in the Canadian Lower Fraser Valley, Atmos. Environ. 31, 627–638.Google Scholar
  12. Kaiser, R. and Gottschalk, G., 1972: Elementare Tests zur Beurteilung von Meßdaten, Bibliographisches Institut AG, Mannheim.Google Scholar
  13. Kanter, H.-J., Mohnen, V. A., Volz-Thomas, A., Junkermann, W., Glaser, K., Weitkamp, H., and Slemr, F., 2002: Quality assurance in TFS for inorganic compounds, J. Atm. Chem. 42, 235–253.Google Scholar
  14. Kenski, D. M., Wadden, R. A., Scheff, P. A., and Lonneman, W. A., 1995: Receptor modeling approach to VOC emission inventory validation, J. Environ. Eng., 483–491.Google Scholar
  15. Kern, T., Metz, N., and Kley, D., 1998: Untersuchungen von Verkehrsabgasemissionen insbesondere im Hinblick auf die Ozonbildung, final report of the co-operation project of the BMW AG, München, and the Research Centre, Jülich., München.Google Scholar
  16. Klemm, O. and Schaller, E., 1994: Aircraft measurement of pollutant fluxes across the borders of eastern Germany, Atmos. Environ. 28, 2847–2860.Google Scholar
  17. Kühlwein, J. and Friedrich, R., 2000: Uncertainties of modelling emissions from road transport. Atmos. Environ. 34, 4603–4610.Google Scholar
  18. Laing, R., Wickert, B., and Friedrich, R., 1998: CAREAIR — A computer aided modeling toolbox to generate and analyze emission data in high temporal and spatial resolution J. Air Waste Manage. Assoc. 48, 1175–1182.Google Scholar
  19. Lamb B., Westberg, H., and Allwine, G., 1986: Isoprene emission fluxes determined by an atmospheric tracer technique, Atmos. Environ. 20, 1–8.Google Scholar
  20. Lamb, B. K., McManus, J. B., Shorter, J. H., Kolb, C. E., Mosher, B., Harriss, R. C., Allwine, E., Blaha, D., Howard, T., Guenther, A., Lott, R. A., Soverson, R., Westberg, H., and Zimmerman, P., 1995: Development of atmospheric tracer methods to measure methane emissions from natural gas facilities and urban areas, Environ. Sci. Technol. 29, 1468–1479.Google Scholar
  21. Leuning R., Baker, S. K., Jamie, I.M., Hsu, C. H., Klein, L., Denmead, O. T., and Griffith, D. W. T., 1999: Methane emissions from free-ranging sheep: A comparison of two measurement methods, Atmos. Environ. 33, 1357–1365.Google Scholar
  22. Mannschreck, K., Klemp, D., Möllmann-Coers, M., and Pätz, H.-W., 2000: Kohlenwasserstoff-Messungen in einer Abluftfahne, Berechnung der Emissionsraten und Charakterisierung der Zusammensetzung, Troposphärisches Ozon, Bd. 32 der Schriftenreihe Kommission Reinhaltung der Luft im VDI und DIN, pp. 367–372.Google Scholar
  23. Mannschreck, K., 2000: thesis, BUGH Wuppertal, September.Google Scholar
  24. Obermeier, A., Friedrich, R., John, C., Seier, J., Vogel, H., Fiedler, F., and Vogel, B., 1995: Photosmog — Möglichkeiten und Strategien zur Verminderung des bodennahen Ozons. Ecomed, Landsberg.Google Scholar
  25. Panitz, H. J., Nester, K., and Fiedler F., 1996: Mass balances and interactions of budget components of chemically reactive air pollutants over the federal state of Baden-Württemberg (Germany). Air Pollution Modeling and its Application XI, Plenum Press, New York and London, 1996, pp. 89–97.Google Scholar
  26. Placet, M., Mann, C. O., Gilbert, R. O., and Niefer, M. J., 2000: Emissions of ozone precursors from stationary sources: A critical review, Atmos. Environ. 34, 2183–2204.Google Scholar
  27. Sawyer, R. F., Harley, R. A., Cadle, S. H., Norbeck, J. M., Slott, R., and Bravo, H. A., 2000: Mobile sources critical review: 1998 NARSTO assessment, Atmos. Environ. 34, 2161–2181.Google Scholar
  28. Scheff, P. A., Wadden, R. A., Kenski, D. M., Chung, J., and Wolff, G., 1996: Receptor model evaluation of the Southeast Michigan Ozone Study ambient NMVOC measurements J. Air Waste Manage. Assoc. 46, 1048–1057.Google Scholar
  29. Sjödin, A., Andreasson, K., Mowrer, J., Potter, A., Pleijel, K., and Almen, J., 1998: Influence of maintenance and driving behaviour on ozone formation potential of real-world road vehicle emissions. EUROTRAC-2, GENEMIS Annual Report.Google Scholar
  30. Thijsse, T. R., van Oss, R. F., and Lenschow, P., 1999: Determination of source contributions to ambient volatile organic compound concentrations in Berlin, J. Air Waste Manage. Assoc. 49, 1394–1404.Google Scholar
  31. United Kingdom Photochemical Oxidants Review Group, 1997: Ozone in the United Kingdom, Department of the Environment, Transport and the Regions.Google Scholar
  32. Volz-Thomas, A., Slemr, J., Konrad, S., Schmitz, Th., Apel, E. C., and Mohnen, V. A, 2001: Quality assurance of hydrocarbon measurements for the German Tropospheric Research focus (TFS), J. Atmos. Chem. 42, 255–279.Google Scholar
  33. Winkler, J., Blank, P., Glaser, K., Gomes, J. A. G., et al., 2002: Ground-based and airborne measurements of nonmethane hydrocarbons in BERLIOZ: Analysis and selected results, J. Atmos. Chem. 42, 465–492.Google Scholar
  34. York, D., 1966: Least-squares fitting of a straight line, Can. J. Phys. 44, 1979–1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • F. Slemr
    • 1
  • G. Baumbach
    • 2
  • P. Blank
    • 3
  • U. Corsmeier
    • 4
  • F. Fiedler
    • 4
  • R. Friedrich
    • 3
  • M. Habram
    • 1
  • N. Kalthoff
    • 4
  • D. Klemp
    • 5
  • J. Kühlwein
    • 3
  • K. Mannschreck
    • 5
  • M. Möllmann-Coers
    • 6
  • K. Nester
    • 4
  • H.-J. Panitz
    • 4
  • P. Rabl
    • 7
  • J. Slemr
    • 1
  • U. Vogt
    • 2
  • B. Wickert
    • 3
  1. 1.Fraunhofer-Institut für Atmosphärische Umweltforschung (IFU)Garmisch PartenkirchenGermany
  2. 2.Institut für Verfahrenstechnik und Dampfkesselwesen (IVD)Universität StuttgartStuttgartGermany
  3. 3.Institut für Energiewirtschaft und Rationelle Energieanwendung (IER)Universität StuttgartStuttgartGermany
  4. 4.Institut für Meteorologie und Klimaforschung (IMK)Universität Karlsruhe/Forschungszentrum KarlsruheKarlsruheGermany
  5. 5.Institut für Chemie der Belasteten Atmosphäre (ICG-2)JülichGermany
  6. 6.Abteilung Arbeitssicherheit und Strahlenschutz (ASS)JülichGermany
  7. 7.Bayerisches Landesamt für Umweltschutz (LfU)AugsburgGermany

Personalised recommendations