Structural Chemistry

, Volume 13, Issue 2, pp 141–148 | Cite as

Theoretical Evidence of Aromaticity in X3 (X = B, Al, Ga) Species

  • Aleksey E. Kuznetsov
  • Alexander I. Boldyrev


We investigated the electronic structure and chemical bonding of the B3, Al3, and Ga3 anions, and the gas phase NaB3, NaAl3, and NaGa3 molecules. We found that the ground state of the neutral gas phase salts contains an equilateral triangular anion interacting with a Na+ cation. The B3, Al3, and Ga3 anions possess two delocalized π electrons and are found to be aromatic. The triangular anions have been shown to be related to recently synthesized organometallic compound containing an aromatic -Ga32− unit, but they are differ from them by four valence electrons. The reason for earlier appearance of the π-orbital in the B3, Al3, and Ga3 anions is discussed.

Aromaticity metal clusters B3, Al3, Ga3 anions NaB3, NaAl3, and NaGa3 salt molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Zandwijk, G.; Janssen, R. A. J.; Buck, H. M., J. Amer. Chem. Soc. 1990, 112, 4155.Google Scholar
  2. 2.
    Schleyer, P. v. R.; Jiao, H.; van E. Hommes, N. J. R.; Malkin, V. G.; Malkina, O. L., J. Amer. Chem. Soc. 1997, 119, 12669.Google Scholar
  3. 3.
    Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y., Aromaticity and Antiaromaticity; Wiley: New York, 1994.Google Scholar
  4. 4.
    Li, X. W.; Pennington, W. T.; Robinson, G. H., J. Amer. Chem. Soc. 1995, 117, 7578.Google Scholar
  5. 5.
    Xie, Y.; Schreiner, P. R.; Schaefer, H. F. III; Li, X. W.; Robinson, G. H., J. Amer. Chem. Soc. 1996, 118, 10635.Google Scholar
  6. 6.
    Robinson, G. H., Account. Chem. Res. 1999, 32, 773.Google Scholar
  7. 7.
    Li, X.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S., Science 2001, 291, 859.Google Scholar
  8. 8.
    Li, X.; Zhang, H. F.; Wang, L. S.; Kuznetsov, A. E.; Cannon, N. A.; Boldyrev, A. I., Angew. Chem. Intern. Ed. 2001, 40, 1867.Google Scholar
  9. 9.
    Boldyrev, A. I.; Simons, J.; Li, X.; Chen, W.; Wang, L. S., J. Chem. Phys. 1999, 110, 8980.Google Scholar
  10. 10.
    Kuznetsov, A. E.; Boldyrev, A. I.; Li, X.; Wang, L. S., J. Amer. Chem. Soc., in press.Google Scholar
  11. 11.
    Twamley, B.; Power, P. P., Angew. Chem. Intern. Ed. 39, 3500 (2000).Google Scholar
  12. 12.
    McLean, A. D.; Chandler, G. S., J. Chem. Phys. 1980, 72, 5639.Google Scholar
  13. 13.
    Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R., J. Comput. Chem. 1983, 4, 294.Google Scholar
  14. 14.
    Frisch, M. J.; Pople, J. A.; Binkley, J. S., J. Chem. Phys. 1984, 80, 3265.Google Scholar
  15. 15.
    Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and Molecules; Oxford Univ. Press: Oxford, 1989.Google Scholar
  16. 16.
    Becke, A. D., J. Chem. Phys. 1993, 98, 5648.Google Scholar
  17. 17.
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Phys. Rev. B 1992, 46, 6671.Google Scholar
  18. 18.
    Martin, J. M. L.; Francois, J. P.; Gijbels, R., J. Chem. Phys. 1989, 90, 6469.Google Scholar
  19. 19.
    Baeck, K. K.; Bartlett, R. J., J. Chem. Phys. 1998, 109, 1334.Google Scholar
  20. 20.
    Meier, U.; Peyerimhoff, S. D.; Grein, F., Z. Phys. D 1990, 17, 209.Google Scholar
  21. 21.
    Cizek, J., Adv. Chem. Phys. 1969, 14, 35.Google Scholar
  22. 22.
    Purvis, G. D., III; Bartlett, R. J., J. Chem. Phys. 1982, 76, 1910.Google Scholar
  23. 23.
    Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III, J. Chem. Phys. 1988, 89, 7282.Google Scholar
  24. 24.
    Cederbaum, L. S., J. Phys. 1975, B8, 290.Google Scholar
  25. 25.
    Niessen, W. von; Shirmer, J.; Cederbaum, L. S., Comput. Phys. Rep. 1984, 1, 57.Google Scholar
  26. 26.
    Zakrzewski, V. G.; Ortiz, J. V., Intern. J. Quant. Chem. Quant. Chem. Symp. 1994, 28, 23.Google Scholar
  27. 27.
    Zakrzewski, V. G.; Ortiz, J. V., Intern. J. Quant. Chem. 1995, 53, 583.Google Scholar
  28. 28.
    For recent review see: Ortiz, J. V.; Zakrzewski, V. G.; Dolgunitcheva, O. in Conceptual Trends in Quantum Chemistry, Kryachko, E. S., ed.; Kluver: Dordrecht, 1997; Vol. 3; p. 463.Google Scholar
  29. 29.
    Frisch, M. J.; Trucks, G. M.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ocheterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle E. S.; Pople, J. A., GAUSSIAN 98 (Revision A.7); Gaussian, Inc., Pittsburgh, PA, 1998.Google Scholar
  30. 30.
    Schaftenaar, G. MOLDEN3.4, CAOS/CAMM Center, The Netherlands (1998).Google Scholar
  31. 31.
    Li, X.; Wu, H.; Wang, X. B.; Wang, L. S., Phys. Rev. Lett. 1998, 81, 1909.Google Scholar
  32. 32.
    Wu, H.; Li, X.; Wang, X. B.; Ding, C.-F. Wang, L. S., J. Chem. Phys. 1998, 109, 449.Google Scholar
  33. 33.
    Villalta, P. W.; Leopold, D. G., unpublished data quoted in Ref. [19].Google Scholar
  34. 34.
    Cha, C.-Y.; Gantefor, G.; Eberhardt, W., J. Chem. Phys. 1994, 100, 995.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Aleksey E. Kuznetsov
    • 1
  • Alexander I. Boldyrev
    • 1
  1. 1.Department of Chemistry and BiochemistryUtah State UniversityLogan

Personalised recommendations