, Volume 47, Issue 4, pp 481–486 | Cite as

Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern México

  • J.A. MartíNez-IbarraEmail author
  • Y. Grant Guillén
  • J.I. Arredondo-Jiménez
  • M.H. Rodríguez-López


Because of inadequate supply of water, inhabitants of five villagesclose to Tapachula, Chiapas, México, store water in cement tanksthat support large populations of Aedes aegypti. Biologicalcontrol using indigenous fish species were studied to control A. aegypti larvae in thosecontainers, since other organisms used as biological control agents areexpensive and unfamiliar to inhabitants of those towns. Other measures(chemical or physical control) are expensive and time consuming. Fiveindigenous fish species, Lepisosteus tropicus (Gill)(Lepisosteiformes: Lepisosteidae), Astyanax fasciatus (Cuvier)(Cypriniformes: Characinidae), Brycon guatemalensis (Regan)(Cypriniformes: Characinidae), Ictalurus meridionalis(Günther) (Cypriniformes: Ictaluridae) and Poecilia sphenopsValenciennes (Cyprinodontiformes: Poeciliidae), currently used asmosquito control agents in the area were tested. Container indexes (ameasure of disease transmission potential) in the tested area werealways zero during the year of the study, independent of towns and fishspecies; this was significantly (P < 0.05) different from containerindexes prior to the test as well as from controls without fish. Nosignificant (P > 0.05) differences were recorded in the efficiency ofthe tested fish species feeding on A. aegypti larvae. Our resultsshow that all tested fish species can be considered as good biologicalagents for controlling A. aegypti larvae in Southern Mexico.

Aedes aegypti indigenous fish species water storage tanks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alio, A.Y., A. Isaq. and L.F. Delfini, 1985. Field trial on the impact of Oreochromis spilurus spilurus on malaria transmission in northern Somalia.WHO/MAL./85.1017,World Health Organization, Geneva.Google Scholar
  2. Álvarez del Villar, J., 1970. Peces mexicanos (claves). Instituto Nacional de Investigaciones Biológico Pesqueras, Comisión Nacional Consultiva de Pesca, México. pp. 165.Google Scholar
  3. Batra, C.P., P.K. Mittal and T. Adak, 2000. Control of Aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. israelensis formulation. J. Am. Mosq. Cont. Assoc. 16(4): 321–323.Google Scholar
  4. Boklund, R.J., 1997. Mosquitofish in control programs. J. Am. Mosq. Cont. Assoc. 13(1): 99.Google Scholar
  5. Borjas, G., G.G. Marten, E. Fernández and H. Portillo, 1993. Juvenile turtles for mosquito control in water storage tanks. J. Med. Entomol. 30(5): 943–946.Google Scholar
  6. Gerberich, J.B. and M. Laird, 1968. Bibliography of papers relating to the control of mosquitoes by the use of fish. An annotated bibliography for the years 1901–1966. FAO Fisheries Tech. Paper 75. FRS/T. 75: 1–70.Google Scholar
  7. Koldenkova, L., I.A. García, I.G. García and V.E. Vivas, 1993. Actividad biorreguladora de cinco especies de peces larvivoros en un criadero natural de Culex quinquefasciatus. Bol. Direc. San Amb. 13(Único): 23–31.Google Scholar
  8. Lee, D.K., 2000. Predation efficacy of the fish muddy loach, Misgurnus mizolepis, against Aedes and Culex mosquitoes in laboratory and small rice plots. J. Am. Mosq. Cont. Assoc. 16(3): 258–261.Google Scholar
  9. Marten, G.G., G. Borjas, M. Cush, E. Fernández and J.W. Reid, 1994. Control of larval Aedes aegypti (Diptera: Culicidae) by cyclopoid copepods in peridomestic breeding containers. J. Med. Entomol. 31(1): 36–44.Google Scholar
  10. Nelson, S.M. and L.C. Keenan, 1992. Use of an indigenous fish species, Fundulus zebrinus, in a mosquito abatement program: a field comparison with the mosquitofish, Gambusia affinis. J. Am. Mosq. Cont. Assoc. 8(3): 301–304.Google Scholar
  11. O. P. S. Organización Panamericana de la Salud, 1997. Dengue y dengue hemorrágico en las Américas: guías para su prevención y control. Pub. Cient. 548, p. 61.Google Scholar
  12. Taylor, D.S., S.A. Ritchie and E. Johnson, 1992. The killfish Rivulus marmoratus: a potential biocontrol agent for Aedes taeniorhynchus and brackfish water Culex. J. Am. Mosq. Cont. Assoc. 8(1): 80–83.Google Scholar
  13. Torrente, A., W. Rojas, A. Durán, T. Kano and S. Orduz, 1993. Fish species from mosquito breeding ponds in northwestern Colombia: evaluation of feeding habits and duistribution. Mem. Inst. Oswaldo Cruz 88(4): 625–627.Google Scholar
  14. Wang, C.H., J.S. Hwang and J.R. Lay, 1990. Preliminary study on the biological control of dengue vectors by fish in Liu-Chiu, Pingtung County, Taiwan. Kaohsiung J. Med. Sci. 6: 382–388.Google Scholar
  15. Wang, C.H., N.T. Chang, H.H. Wu and C.M. Ho, 2000. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu Village, Ping-Tung County, Taiwan. J. Am. Mosq. Cont. Assoc. 16(2): 93–99.Google Scholar
  16. WHO (World Health Organization), 1972. A system of worldwide surveillance for vectors. Wkly. Epidemiol. Rec. 47: 73–84.Google Scholar
  17. Wu, N., S. Wang, G. Han, R. Xu, G. Tang and C. Quian, 1987. Control of Aedes aegypti larvae in household water containers by Chinese catfish. Bull. WHO 65: 503–506.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.A. MartíNez-Ibarra
    • 1
    Email author
  • Y. Grant Guillén
    • 1
  • J.I. Arredondo-Jiménez
    • 1
  • M.H. Rodríguez-López
    • 1
  1. 1.Centro de Investigación de PaludismoInstituto Nacional de Salud PúblicaTapachula, ChiapasMéxico

Personalised recommendations