, Volume 470, Issue 1–3, pp 127–132 | Cite as

In situ primary production in young Antarctic sea ice

  • Thomas Mock


An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The light transmission was improved by the construction of a cylindrical frame instead of using a transparent acrylic-glass barrel. The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice, which is an important component in the sea ice ecosystem of the Antarctic Ocean. The rates of carbon assimilation of the interior algal assemblage (top to 5 cm from bottom) was 0.25 mg C m−2 d−1 whereas the bottom algal community (lowest 5 cm) attained only 0.02 mg C m−2 d−1. Chl a specific production rates (PChl) for bottom algae (0.020 – 0.056 μg C μg chl a−1 h−1) revealed strong light limitation, whereas the interior algae (PChl = 0.7 – 1.2 μg C μg chl a−1 h−1) were probably more limited by low temperatures (< –5 °C) and high brine salinities.

Antarctica algae carbon assimilation chlorophyll a growth in situ primary production methods photosynthesis sea ice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arar, E. J. & G. B. Collins, 1992. In vitro determination of chlorophyll α and phaeophytin α in marine and freshwater phytoplankton by fluorescence. Method 445.0. In: USEPA, Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Samples. EPA Cincinnati OH.Google Scholar
  2. Arrigo, K. R., J. N. Kremer & C. W. Sullivan, 1993. A simulated Antarctic fast ice ecosystem. J. Geophys. Res. 98: 6929–6946.Google Scholar
  3. Arrigo, K. R., D. L. Worthen, M. P. Lizotte, P. Dixon & G. Dieckmann, 1997, Primary production in Antarctic sea ice. Science 276: 394–397.Google Scholar
  4. Clasby, R. C., R. Horner & V. Alexander, 1973. An in situ method for measuring primary production of Arctic sea ice algae. J. Fish. Res. Brd. Can. 30: 635–638.Google Scholar
  5. Gleitz, M. & D. N. Thomas, 1993. Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. J. exp. mar. Biol. Ecol. 173: 211–230.Google Scholar
  6. Gosselin, M., M. Levasseur, P. A. Wheeler, R. A. Horner & B. C. Booth, 1997, New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res 44: 1623–1644.Google Scholar
  7. Grossi, S. M., S. T. Kottmeier, R. L. Moe, G. T. Taylor & C. W. Sullivan, 1987. Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Mar. Ecol. Prog. Ser. 35: 153–164.Google Scholar
  8. Hoshiai, T., 1985. Autumn proliferation of ice algae in Antarctic sea ice. In Siegfried, W. R., P. R. Condy & R. M. Laws (eds), Antarctic Nutrient Cycles and Food Webs. Springer Verlag Berlin, Heidelberg: 89–92.Google Scholar
  9. Kirst, G. O. & C. Wiencke, 1995. Ecophysiology of polar algae. J. Phycol. 31: 181–199.Google Scholar
  10. Kottmeier, S. T. & C. W. Sullivan, 1988. Sea ice microbial communities (SIMCO), 9. Effects of temperature and salinity on rates of metabolism and growth of autotrophs and heterotrophs. Polar Biol. 8: 293–304.Google Scholar
  11. Martin, S., 1974. Ice stalactites: comparison of a laminar flow theory with experiment. J. Fluid. Mech. 63: 51–79.Google Scholar
  12. Maykut, G. A., 1985. The ice environment. In Horner, R. (ed.), Sea Ice Biota. CRC Press, Boca Raton: 21–82.Google Scholar
  13. McMinn, A. & C. Ashworth, 1998. The use of oxygen microelectrodes to determine the net production by Antarctic sea ice algal communities. Antarctic Sci. 10: 39–44.Google Scholar
  14. McMinn, A., C. Ashworth & K. G. Ryan, 2000. In situ primary production of an Antarctic fast ice bottom algal community. Aquat. Microb. Ecol. 21: 177–185.Google Scholar
  15. Melnikov, I., 1997. The Arctic Sea Ice Ecosystem. Gordon and Breach Science Publishers, Amsterdam.Google Scholar
  16. Mobley, C. D., G. F. Cota, T. C. Grenfell, R. A. Maffione, W. S. Pegau & D. K. Perovich, 1998. Modeling light propagation in sea ice. IEEE Transact. Geosci. and Remote Sens. 36: 1743–1749.Google Scholar
  17. Mock, T. & R. Gradinger, 1999. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177: 15–26.Google Scholar
  18. Mock, T. & R. Gradinger, 2000. Changes in photosynthetic carbon allocation in algal assemblages of Arctic sea ice with decreasing nutrient concentrations and irradiance. Mar. Ecol. Prog. Ser. 202: 1–11.Google Scholar
  19. Palmisano, A. C., J. Beeler SooHoo & C. W. Sullivan, 1985a. Photosynthesis-irradiance relationship in sea ice microalgae from McMurdo sound, Antarctica. J. Phycol. 21: 341–346.Google Scholar
  20. Palmisano, A. C., S. Kottmeier, R. L. Moe & C.W. Sullivan, 1985b. Sea ice microbial communities. IV. Effect of light perturbation on microalgae at the ice water interface. Mar. Ecol. Prog. Ser. 21: 37–45.Google Scholar
  21. Palmisano, A. C., J. Beeler SooHoo, R. L. Moe & C. W. Sullivan, 1987. Sea ice microbial communities. VII. Changes in under ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar. Ecol. Prog. Ser. 35: 165–173.Google Scholar
  22. Perovich, D. K. & T. C. Grenfell, 1981. Laboratory studies of the optical properties of young sea ice. J. Glaziol. 27: 331–346.Google Scholar
  23. Smith, R. E. H. & A. W. Herman, 1991. Productivity of sea ice algae: In situ vs. incubator methods. J. mar. Syst. 2: 97–110.Google Scholar
  24. Smith, R. E. H., J. Anning, P. Clement & G. Cota, 1988. Abundance and production of ice algae in Resolute Passage, Canadian Arctic. Mar. Ecol. Prog. Ser. 48: 251–263.Google Scholar
  25. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Bull. Fish. Res. Bd Can: 167 pp.Google Scholar
  26. Sullivan, C. W., A. C. Palmisano, S. Kottmeier, S. M. Grossi & R. Moe, 1985. The influence of light on growth and development of sea ice microbial communities in McMurdo Sound. In Siegfried, W. R., P. R. Condy & R. M. Laws (eds), Antarctic Nutrient Cycles and Food Webs. Springer, Berlin: 78–83.Google Scholar
  27. Trenerry, L. J., A. McMinn & K. G. Ryan, 2002. In situ microelectrode measurements of bottom-ice algal production in McMurdo Sound, Antarctica. Polar Biol. 25: 72–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Thomas Mock
    • 1
  1. 1.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations