Advertisement

Functional Analysis and Its Applications

, Volume 36, Issue 2, pp 134–139 | Cite as

A Remark on the Fourier Pairing and the Binomial Formula for the Macdonald Polynomials

  • A. Yu. Okounkov
Article

Abstract

We concisely and directly prove that the interpolation Macdonald polynomials are orthogonal with respect to the Fourier pairing and briefly discuss immediate applications of this fact, in particular, to the symmetry of the Fourier pairing and to the binomial formula.

Macdonald polynomials, Fourier pairing, binomial formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Cherednik, “Macdonald's evaluation conjectures and difference Fourier transform,” Invent. Math., 122, No.1, 119–145 (1995).Google Scholar
  2. 2.
    I. Cherednik, “Nonsymmetric Macdonald polynomials,” Intern. Math. Res. Notices, 483–515 (1995).Google Scholar
  3. 3.
    F. Knop, “Symmetric and non-symmetric quantum Capelli polynomials,” Comment. Math. Helv., 72, 84–100 (1997).Google Scholar
  4. 4.
    F. Knop, Combinatorics and Invariant Theory of Multiplicity Free Spaces, math.RT/0106079.Google Scholar
  5. 5.
    F. Knop and S. Sahi, “Difference equations and symmetric polynomials defined by their zeros,” Internat. Math. Res. Notices, No. 10, 473–486 (1996).Google Scholar
  6. 6.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1995.Google Scholar
  7. 7.
    I. G. Macdonald, Symmetric Functions and Orthogonal Polynomials, Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ, University Lecture Series, Vol. 12, Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  8. 8.
    A. Okounkov, “(Shifted) Macdonald polynomials: q-Integral representation and combinatorial formula,” Compositio Math., 112, No.2, 147–182 (1998).Google Scholar
  9. 9.
    A. Okounkov, “Binomial formula for Macdonald polynomials and applications,” Math. Res. Lett., 4, No.4, 533–553 (1997).Google Scholar
  10. 10.
    A. Okounkov, “BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials,” Transform. Groups, 3, No.2, 181–207 (1998).Google Scholar
  11. 11.
    A. Okounkov, Combinatorial Formula for Macdonald Polynomials, Bethe Ansatz, and Generic Macdonald Polynomials, math.QA/0008094.Google Scholar
  12. 12.
    A. Okounkov and G. Olshanski, “Shifted Jack polynomials, binomial formula, and applications,” Math. Res. Lett., 4, No.1, 69–78 (1997).Google Scholar
  13. 13.
    S. Sahi, “Interpolation, integrality, and a generalization of Macdonald's polynomials,” Internat. Math. Res. Notices, No. 10, 457–471 (1996).Google Scholar
  14. 14.
    S. Sahi, “The binomial formula for nonsymmetric Macdonald polynomials,” Duke Math. J., 94, No.3, 465–477 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. Yu. Okounkov
    • 1
  1. 1.Department of MathematicsUniversity of California at BerkeleyUSA

Personalised recommendations