, Volume 470, Issue 1–3, pp 97–113 | Cite as

Winter phytoplankton community structure in three shallow temperate lakes during ice cover

  • Karen A. Phillips
  • Marvin W. Fawley


The general model of seasonal phytoplankton succession in temperate lakes suggests that winter phytoplankton growth is minimal under ice-cover. However, some studies have found diverse phytoplankton communities during winter. The primary objectives of this study were to determine the species composition and the changes in the winter phytoplankton community structure under the ice. For 2 consecutive winters, phytoplankton samples were collected under ice-cover at 4 sites on 3 lakes in Arrowwood National Wildlife Refuge (ANWR), near Pingree, North Dakota. Ninety taxa were identified and enumerated. Densities of several of these taxa frequently exceeded 106 cells l−1. The winter phytoplankton communities in these lakes were dominated by flagellates, principally cryptomonads, a synurophyte (Synura uvella), small chrysophytes (Chrysococcus spp., Kephyrion spp.) and a dinoflagellate (Peridinium aciculiferum), as well as non-flagellate microchlorophytes (Monoraphidium spp., Ankistrodesmus spp., and Pseudodictyosphaerium sp.), a cyanobacterium (Gloeocapsa aeruginosa) and centric diatoms (Stephanodiscus minutulus, S. parvus and Cyclotella meneghiniana).

phytoplankton succession winter ice-cover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agbeti, M. D. & J. P. Smol. 1995. Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304: 221–234.Google Scholar
  2. Bolsenga, S. J. & H. A. Vanderploeg, 1992. Estimating photosynthesis available radiation into open and and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 95–104.Google Scholar
  3. Bourrelly, P., 1968. Les algues'eau douce. Tome 2. Les Algues jaunes and brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées. Boubée et Cie, Paris: 438 pp.Google Scholar
  4. Bourrelly, P., 1970. Les algues d'eau douce. Tome 3. Les Algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Boubée et Cie, Paris: 512 pp.Google Scholar
  5. Brunnthaler, J., 1900. Plankton-Studien. I. Das Phytoplankton des Donaustromes bei Wien. Verhandl. D. k. k. zool.-botan. Ges. Wien. 50: 308–311.Google Scholar
  6. Clesceri, L. S., A. E. Greenberg & R. R. Trussell (eds), 1989. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Washington: 1193 pp.Google Scholar
  7. Cloern, J. E., A. E Alpine, B. E. Cole & T. Heller, 1992. Seasonal changes in the spatial distribution of phytoplankton in small, temperate-zone lakes. J. Plankton Res. 14: 1017–1024.Google Scholar
  8. Cox, E. J., 1996. Identification of Freshwater Diatoms from Live Material. Chapman & Hall, London: 158 pp.Google Scholar
  9. Dodd, J. J., 1987. Diatoms. Southern Illinois University Press, Carbondale: 477 pp.Google Scholar
  10. Ettl, H. & G. Gärtner, 1995. Syllabus der Boden-, Luft-, und Flechtenalgen. Gustav Fischer Verlag, Stuttgart: 721 pp.Google Scholar
  11. Gojdics, M., 1953. The Genus Euglena. University of Wisconsin, Madison: 268 pp.Google Scholar
  12. Griffith, M. B. & S. A. Perry, 1995. Between-year variation of periphyton community structure in two Appalachian headwater streams. Hydrobiologia 302: 1–9.Google Scholar
  13. Hanson, D. A., 1978. Chemical and physical characteristics of the James River from Arrowwood Refuge to the outflow of Jamestown Dam, North Dakota. M.S. thesis. North Dakota State University, Fargo: 77 pp.Google Scholar
  14. Happey-Wood, C. M., 1991. Ecology of freshwater plankton green algae. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton, Cambridge University Press: 175–226.Google Scholar
  15. Hasle, G. R., 1978. Using the inverted microscope. In Sornia, A. (ed.) Monographs on Oceanographic Methodology. no. 6. Phytoplankton Manual, Unesco Press: 194 pp.Google Scholar
  16. Hindák, F., 1970. A contribution to the systematics of the family Ankistrodesmaceae (Chlorophyceae). Algol. Stud. (TÍeboá) 1: 7–32.Google Scholar
  17. Hindák, F., 1988. Studies on the Chlorococcal Algae (Chlorophyceae) 4. VEDA, Bratislava, 263 pp.Google Scholar
  18. Hutchinson, G. E. 1967. A Treatise on Limnology. 2. Introduction to Lake Biology and the Limnoplankton. John Wiley, New York: 1115 pp.Google Scholar
  19. Jones, R. I. & V. Ilmavirta, 1978. Vertical and seasonal variation of phytoplankton photosynthesis in a brown-water lake with winter ice cover. Freshwat. Biol. 8: 561–572.Google Scholar
  20. Kalff, J., H. J. Kling, S. H. Holmgren, & H. E. Welch, 1975. Phytoplankton, phytoplankton growth and biomoass cycles in an unpolluted and in a polluted polar lake. Verh. int. Ver. Limnol. 19: 487–495.Google Scholar
  21. Keefer, V. M. & R. W. Pennak, 1977. Plankton and seston of a Colorado (U.S.A.) alpine lake: the winter anomaly and the inlet-outlet budget. Int. Rev. ges. Hydrobiol. 62: 255–278.Google Scholar
  22. Kofoid, C. A., 1908., The plankton of the Illinois River, 1894–1899, with introductory notes upon the hydrography of the Illinois River and its basin. Part 2. Constituent organisms and their seasonal distribution. Bull. Ill. State Lab. Nat. Hist. 8: 1–354.Google Scholar
  23. Korshikov, O. A., 1987. The Freshwater Algae of the Ukranian SSR. V. Sub-Class Protococcineae, Vacuolales and Protococcales. Koeltz Scientific Books, Koenigstein, West Germany: 412 pp.Google Scholar
  24. Krammer, K. & H. Lange-Bertalot, 1991a. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer, Stuttgart: 576 pp.Google Scholar
  25. Krammer, K. & H. Lange-Bertalot, 1991b. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturerzeichnis für Teil 1–4). Gustav Fischer, Stuttgart: 437 pp.Google Scholar
  26. Krammer, K. and H. Lange-Bertalot, 1997a. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer, Stuttgart: 876 pp.Google Scholar
  27. Krammer, K. and H. Lange-Bertalot,1997b. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer, Stuttgart: 610 pp.Google Scholar
  28. Komárková-Legnerová, J., 1969. The systematics and ontogenesis of the genera Ankistrodesmus Corda and Monoraphidium gen. nov. In Fott, B. (ed.), Studies in Phycology. Academia: 75–144.Google Scholar
  29. Lecewicz, W., W. Sokotowska & I. Wojciechowski, 1973. The changes of winter phytoplankton in relation to the light climate in the lakes with various trophy. Ekol. Pol. 21: 193–208.Google Scholar
  30. Marsson, M., 1900. Zur Kenntnis der Planktonverältnisse einiger Gewässer der Umgebung von Berlin. Forschungsber. aus der Biol. Station zu Plön 8: 86–119.Google Scholar
  31. Nauwerck, A., 1963. Die beziehungen zwischen Zooplankton und Phytoplankton im See erken. Sym. Bot Upsalienses 17: 1–163.Google Scholar
  32. Nebaeus, M., 1984. Algal water-blooms under ice-cover. Verh. Internat. Verein. Limnol. 22: 719–724.Google Scholar
  33. Németh, J., 1997a. A Guide for the Identification of Euglenophyta occurring in Hungary, 1. K.G.I., Budapest: 352 pp.Google Scholar
  34. Németh, J., 1997b. A Guide for the Identification of Euglenophyta occurring in Hungary, 2. K.G.I., Budapest: 254 pp.Google Scholar
  35. Phillips, K. A., 1998. Phytoplankton community structure under ice in shallow North Dakota lakes. PhD thesis. North Dakota State University, Fargo 96 pp.Google Scholar
  36. Phillips, K. A. & M. W. Fawley, 2001. Diversity of coccoid algae in shallow lakes during winter. Phycologia 39: 498–506.Google Scholar
  37. Prescott, G. W., 1978. How to Know the Freshwater Algae. Wm. C. Brown, Dubuque: 293 pp.Google Scholar
  38. Prescott, G. W., 1982. Algae of the Western Great Lakes Area. Koenigstein, West Germany: 977 pp.Google Scholar
  39. Rengefors, K., Seasonal succession of dinoflagellates coupled to the benthic cyst dynamics in Lake Erken, Sweden. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 51: 123–141.Google Scholar
  40. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, New York: 747 pp.Google Scholar
  41. Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbol. Bot. Upsal. 9: 1–399.Google Scholar
  42. Spaulding, S. A., J. V. Ward & J. Baron, 1993.Winter phytoplankton dynamics in a subalpine lake, Colorado, U.S.A. Arch. Hydrobiol. 129: 179–198.Google Scholar
  43. Starmach, K., 1985. Süßwasser von Mitteleuropa. Chrysophyceae und Haptophyceae. Gustav Fischer Verlag, Stuttgart: 721 pp.Google Scholar
  44. Stewart, A. J. & R. G. Wetzel, 1986. Cryptophytes and other micro-flagellates as couplers in planktonic community dynamics. Arch. Hydrobiol: 106: 1–19.Google Scholar
  45. Taylor, F. J. R., 1987. Dinoflagellate morphology. In Taylor, F. J. R. (ed.), The Biology of Dinoflagellates. Blackwell Scientific Publ.: 24–91.Google Scholar
  46. Throndsen, J., 1978. Preservation and storage. In Sornia, A. (ed.), Monographs on Oceanographic Methodology. No. 6. Phytoplankton Manual. Unesco Press: 69–71.Google Scholar
  47. U.S. Fish and Wildlife Service, 1997. Arrowwood National Wildlife Refuge, Pingree, North Dakota. http://www.r6.fws.gov/ REFUGES/ARROWWOO.HTM.Google Scholar
  48. Verduin, J., 1959. Photosynthesis by aquatic communities in northwestern Ohio. Ecology 40: 377–383.Google Scholar
  49. Wetzel, R. G., 1966. Variations in productivity of Goose and hypereutrophic Sylvan lakes, Indiana. Invest. Indiana Lakes & Streams 7: 147–184.Google Scholar
  50. Wetzel, R. G., 1983. Limnology. Saunders, New York: 753 pp.Google Scholar
  51. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analysis. Springer-Verlag, New York: 139–140.Google Scholar
  52. Wiedner, C. & B. Nixdorf, 1998. Success of chrysophytes, cryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes. Hydrobiologia 369/370: 229–235.Google Scholar
  53. Wojciechowska, W., W. Pęczula & A. Zykubek, 1998. Eutrophication and winter-period structure of phytoplankton in three deep lakes in the Leczna-Włodawa Lakeland, Eastern Poland. Pol. J. Ecol. 46: 89–99.Google Scholar
  54. Wright, R. T., 1964. The dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr. 9: 163–178.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Karen A. Phillips
    • 1
  • Marvin W. Fawley
    • 1
  1. 1.Department of BotanyNorth Dakota State University, FargoU.S.A.

Personalised recommendations