Annals of Global Analysis and Geometry

, Volume 21, Issue 4, pp 341–376

Comparison of Twisted P-Form Spectra for Flat Manifolds with Diagonal Holonomy

  • R. J. Miatello
  • J. P. Rossetti
Article

Abstract

We give an explicit formula for the multiplicities of the eigenvalues ofthe Laplacian acting on sections of natural vector bundles over acompact flat Riemannian manifold MΓ = Γ\ℝn,Γ a Bieberbach group. In the case of the Laplacian acting onp-forms, twisted by a unitary character of Γ, when Γ hasdiagonal holonomy group F ≃ ℤ2k, these multiplicities have acombinatorial expression in terms of integral values of Krawtchoukpolynomials and the so called Sunada numbers. If the Krawtchoukpolynomial Kpn(x)does not have an integral root, this expressioncan be inverted and conversely, the presence of such roots allows toproduce many examples of p-isospectral manifolds that are notisospectral on functions. We compare the notions of twistedp-isospectrality, twisted Sunada isospectrality and twisted finitep-isospectrality, a condition having to do with a finite part of thespectrum, proving several implications among them and getting a converseto Sunada's theorem in our context, for n ≤ 8. Furthermore, a finitepart of the spectrum determines the full spectrum. We give new pairs ofnonhomeomorphic flat manifolds satisfying some kind of isospectralityand not another. For instance: (a) manifolds which are isospectral onp-forms for only a few values of p ≠ 0, (b) manifolds which aretwisted isospectral for every χ, a nontrivial character of F, and(c) large twisted isospectral sets.

Laplacian flat manifolds twisted isospectral Krawtchouk polynomials vector bundles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown H., Bülow R., Neubüser J., Wondratschok H. and Zassenhaus H.: Crystallographic Groups of Four-Dimensional Space, Wiley, New York, 1978.Google Scholar
  2. 2.
    Bérard, P.: FrTransplantation et isospectralité I, Math. Ann. 292 (1992), 547–559.Google Scholar
  3. 3.
    Büser, P. and Courtois, G.: Finite parts of the spectrum of a Riemann surface, Math. Ann. 287 (1990), 523–530.Google Scholar
  4. 4.
    Cobb, P.: Manifolds with holonomy group ℤ2⊕ ℤ2and first Betti number zero, J. Differential Geom. 10 (1975), 221–224.Google Scholar
  5. 5.
    Charlap, L.: Bieberbach Groups and Flat Manifolds, Springer, New York, 1988.Google Scholar
  6. 6.
    Chihara, L. and Stanton, D.: Zeros of generalized Krawtchouk polynomials, J. Approx. Theory 60 (1990), 43–57.Google Scholar
  7. 7.
    Dai, X. and Wei, G.: Finite part of the spectrum and isospectrality, Contemp. Math. 173 (1994), 99–107.Google Scholar
  8. 8.
    DeTurck, D. and Gordon, C.: Isospectral deformations I: Riemannian structures on two-step nilspaces, Comm. Pure Appl. Math. 40 (1987), 367–387.Google Scholar
  9. 9.
    DeTurck, D. and Gordon, C.: Isospectral deformations II: Trace formulas, metrics, and potentials, Comm. Pure Appl. Math. 42 (1989), 1067–1095.Google Scholar
  10. 10.
    Dotti, I. and Miatello, R.: Isospectral compact flat manifolds, Duke Math. J. 68 (1992), 489–498.Google Scholar
  11. 11.
    Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in ℝn, Comm. Pure Appl. Math. 37 (1984), 647–676 (part I), 715-753 (part II).Google Scholar
  12. 12.
    Gilkey, P.: On spherical space forms with metacyclic fundamental group which are isospectral but not equivarianly cobordant Compositio Math. 56 (1985), 171–200.Google Scholar
  13. 13.
    Gordon, C.: Riemannian manifolds isospectral on functions but not on 1-forms, J. Differential Geom. 24 (1986), 79–96.Google Scholar
  14. 14.
    Gordon, C.: Survey of isospectral manifolds, in: F. J. E. Dillen and L. C. A. Verstraeten (eds), Handbook of Differential Geometry, Vol. 1, Elsevier, Amsterdam, 2000, pp. 747–778.Google Scholar
  15. 15.
    Gordon, C., Ouyang, H. and Schueth, D.: Distinguishing isospectral nilmanifolds by bundle Laplacians, Math. Res. Lett. 4 (1997), 23–33.Google Scholar
  16. 16.
    Gornet, R.: Continuous families of Riemannian manifolds, isospectral on functions but not on 1-forms, J. Geom. Anal. 10(2) (2000), 281–298.Google Scholar
  17. 17.
    Ikeda, A.: Riemannian manifolds p-isospectral but not p + 1-isospectral, Perspect. Math. 8 (1988), 159–184.Google Scholar
  18. 18.
    Krasikov, I. and Litsyn, S.: On integral zeros of Krawtchouk polynomials J. Combin. Theory A 74 (1996), 71–99.Google Scholar
  19. 19.
    Miatello, R. and Rossetti, J. P.: Isospectral Hantzsche-Wendt manifolds, J. Reine Angew. Math. 515 (1999), 1–23.Google Scholar
  20. 20.
    Miatello, R. and Rossetti, J. P.: Hantzsche-Wendt manifolds of dimension 7, in: I. Kolár, O. Kowalski, D. Krupka and J. Slovak (eds), Differential Geometry and Applications, Proc. 7th Internat. Conference, Masaryk Univ., Brno, 1999, pp. 379-390.Google Scholar
  21. 21.
    Miatello, R. and Rossetti, J. P.: Flat manifolds isospectral on p-forms, J. Geom. Anal. 11 (2001), 647–665.Google Scholar
  22. 22.
    Pesce, H.: FrUne reciproque générique du theorème de Sunada, Compositio Math. 109 (1997), 357–365.Google Scholar
  23. 23.
    Pesce, H.: FrVariétés hyperboliques et elliptiques fortement isospectrales, J. Funct. Anal. 134 (1995), 363–391.Google Scholar
  24. 24.
    Roman, S.: Coding and Information Theory, Springer, New York, 1992.Google Scholar
  25. 25.
    Rossetti, J. P. and Tirao, P.: Five-dimensional Bieberbach groups with holonomy group ℤ2⊕ ℤ2, Geom. Dedicata 77 (1999), 149–172.Google Scholar
  26. 26.
    Schueth, D.: Line bundle Laplacians over isospectral nilmanifolds, Trans. Amer. Math. Soc. 349 (1997), 3787–3802.Google Scholar
  27. 27.
    Schueth, D.: Continuous families of isospectral metrics on simply connected manifolds, Ann. of Math. 149 (1999), 287–308.Google Scholar
  28. 28.
    Sunada, T.: Riemannian coverings and isospectral manifolds, Ann. of Math. 121 (1985), 169–186.Google Scholar
  29. 29.
    Van Lint, J. H. and Wilson, R. M.: A Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992.Google Scholar
  30. 30.
    Wolf, J.: Spaces of Constant Curvature, McGraw-Hill, New York, 1967.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R. J. Miatello
    • 1
  • J. P. Rossetti
    • 1
  1. 1.FaMAF-CIEMUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations