Natural Hazards

, Volume 26, Issue 3, pp 279–331

Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar

  • Neil Cherry
Article

Abstract

A large number of studies have identified significant physical, biological and health effects associated with changes in Solar and Geomagnetic Activity (S-GMA). Variations in solar activity, geomagnetic activity and ionospheric ion/electron concentrations are all mutually highly correlated and strongly linked by geophysical processes. A key scientific question is, what factor is it in the natural environment that causes the observed biological and physical effects? The effects include altered blood pressure and melatonin, increased cancer, reproductive, cardiac and neurological disease and death. Many occupational studies have found that exposure to ELF fields between 16.7 Hz and 50/60 Hz significantly reduces melatonin levels. They are also associated with the same and very similar health effects as the S-GMA effects. The cell membrane has an electric field of the order of 105 V/cm. The ELF brain waves operate at about 10-1 V/cm. Fish, birds, animalsand people have been shown to respond to ELF signals that produce tissue electric gradients of ULF/ELF oscillating signals at a threshold of 10-7 to 10-8 V/cm.This involves non-linear resonant absorption of ULF/ELF oscillating signals into systems that use natural ion oscillation signals in the same frequency range. A long-lived, globally available natural ULF/ELF signal, the Schumann Resonance signal, was investigated as the possible plausible biophysical mechanism for the observedS-GMA effects. It is found that the Schumann Resonance signal is extremely highly correlated with S-GMA indices of sunspot number and the Kp index. The physical mechanism is the ionospheric D-region ion/electron density that varies with S-GMA and forms the upper boundary of the resonant cavity in which the Schumann Resonance signal is formed. This provides strong support for identifying the Schumann Resonance signals as the S-GMA biophysical mechanism, primarily through a melatonin mechanism. It strongly supports the classification of S-GMA as a natural hazard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelin, T.: 1999, Sleep disruption and melatonin reduction from exposure to a shortwave radio signal in Switzerland, Seminar at Environment Canterbury, New Zealand. August 1999.Google Scholar
  2. Adey, W. R.: 1980, Frequency and power windowing in tissue interactions with weak electromagnetic fields' Proc IEEE 68(1), 119-125.Google Scholar
  3. Adey, W. R.: 1981, Tissue interactions with nonionizing electromagnetic fields, Physiol.Rev. 61(2), 435-514.Google Scholar
  4. Adey, W. R.: 1990, Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion, Environ Health Perspectives 86, 297-305.Google Scholar
  5. Adey, W. R.: 1993, 'Biological effects of electromagnetic fields', J.Cell.Biochem. 51(4), 410-416.Google Scholar
  6. Ahissar, E., Haidarliu, S., and Zacksenhouse, M.: 1997, Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators, Proc.Natl.Acad.Sci.(USA) 94(21), 11633-11638.Google Scholar
  7. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D.: 1994, Molecular Biology of the Cell, 3rd edition, Garland Publishing, New York.Google Scholar
  8. Al-Ghoul, W. M., Herman, M. D., and Dubocovich, M. L.: 1998, Melatonin receptor expression in human cerebellum, Neuroreport 9(18), 4063-4068.Google Scholar
  9. Akasofu, S. I. and Chapman, S.: 1972, Solar and Terrestrial Physics, Oxford University Press, London.Google Scholar
  10. Andrade, R.: 1998, Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes, Ann.NY Acad.Sci. 861, 190-203.Google Scholar
  11. Arnetz, B. B. and Berg, M.: 1996, Melatonin and andrenocorticotropic hormone levels in video display unit workers during work and leisure, J.Occup.Med. 38(11), 1108-1110.Google Scholar
  12. Avdonina, E. N. and Samovichev, E. G.: 1995, Some heliogeophysical characteristics of a series of especially dangerous crimes, Biofizika 40(5), 1060-1063.Google Scholar
  13. Babych, V. I.: 1995, The characteristics of tissue lipid peroxidation in the internal organs and the lipid metabolic indices of the blood plasma in a low geomagnetic field, Fiziol Zh. 41(5-6), 44-49.Google Scholar
  14. Balon, N. and Rao, P. B.: 1990, Dependence of ionospheric response on the local time of sudden commencement and the intensity of geomagnetic storms, J.Atmospheric and Terrestrial Physics 52(4), 269-275.Google Scholar
  15. Balser, M. and Wagner, C. A.: 1960, Observations of earth-ionosphere cavity resonances, Nature 188 (Nov 19), 638-641.Google Scholar
  16. Bardasano, J. L., Cos, S., and Picazo, M. L.: 1989, Numerical variation in synaptic ribbons of rat pinealocytes under magnetic storm conditions and on calm days, [In German], J.Hirnforsch. 30(60), 639-643.Google Scholar
  17. Baris, D. and Armstrong, B.: 1990, Suicide among electric utility workers in England and Wales, Br.J.Indust.Med. 47, 788-789.Google Scholar
  18. Bartsch, H., Bartsch, C., Mecke, D., and Lippert, T. H.: 1994, Seasonality of pineal melatonin production in the rat: possible synchronization by the geomagnetic field, Chronobiol.Int. 11(1), 21-26.Google Scholar
  19. Bawin, S. M., Gavalas-Medici, R., and Adey, W. R.: 1973, Effects of modulated very high frequency fields on specific brain rhythms in cats, Brain Res. 58, 365-384.Google Scholar
  20. Bawin, S. M. and Adey, W. R.: 1976, Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields, Proc.Nat.Acad.Sci.USA 73, 1999-2003.Google Scholar
  21. Belanger, K., Leaderer, B., Hellenbrand, K., Holford, T. R., McSharry, J-E., Power, M-E., and Bracken, M. B.: 1998, Spontaneous abortion and exposure to electric blankets and heated water beds, Epidemiology 9, 36-42.Google Scholar
  22. Belisheva, N. K. and Popov, A. N.: 1995, Dynamics of the morphofunctional status of cell cultures exposed to variations in the geomagnetic field at high latitudes, Biofizika 40(4), 755-764.Google Scholar
  23. Belisheva, N. K., Popov, A. N., Petukhova, N. V., Pavlova, L. P., Osipov, K. S., Tkachenko, S. E., and Varanova, T. I.: 1995, Qualitative and quantitative assessment of exposure to geomagnetic field variations on the functional status of the human brain [in Russian], Biofizika 40(5), 1005-1012.Google Scholar
  24. Belov, D. R., Kanunikov, I. E., and Kiselev, B. V.: 1998, Dependence of human EEG synchronization on the geomagnetic activity on the day of experiment, Ross Fiziol.Zh Im I M Sechenova, 84(8), 761-774.Google Scholar
  25. Belrose, J. S.: 1968, AGARD Report 29, 1968, cited in J. K. Hargreaves, 1992, The Solar-terrestrial Environment, Cambridge University Press, Cambridge, UK.Google Scholar
  26. Belrose, J. S. and Cetiner, C.: 1962, Measurement of electron densities in the ionospheric D-Region at the time of a 2+ solar flare, Nature 195, 688-690.Google Scholar
  27. Beresford, I. J., Browning, C., Starkley, S. J., Brown, J., Foord, S. M., Coughlan, J., North, P. C., Dubocovich, M. L., and Hagan, R. M.: 1998, GR196429: A nonindolic antagonist at high-affinity melatonin receptors, J.Pharmocol.Exp.Ther. 285(3), 1239-1245.Google Scholar
  28. Blackman, C. F., Benane, S. G., Elliott, D. J., and Pollock, M. M.: 1988, Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: A three-model analysis consistent with the frequency response up to 510 Hz, Bioelectromagnetics 9, 215-227.Google Scholar
  29. Blackman, C. F.: 1990, ELF effects on calcium homeostasis. In: B. W. Wilson, R. G. Stevens, L. E. Anderson (eds), Extremely Low Frequency Electromagnetic Fields: The Question of Cancer, Battelle Press Columbus, pp. 187-208.Google Scholar
  30. Bortkiewicz, A., Zmyslony, M., Palczynski, C., Gadzicka, E., and Szmigielski, S.: 1995, Dysregulation of autonomic control of cardiac function in workers at AM broadcasting stations (0.738-1.503 MHz), Electro-and Magnetobiology 14(3), 177-191.Google Scholar
  31. Bortkiewicz, A., Gadzicka, E., and Zmyslony, M.: 1996, Heart rate in workers exposed to mediumfrequency electromagnetic fields, J.Auto.Nerv.Sys. 59, 91-97.Google Scholar
  32. Bortkiewicz, A., Zmyslony, M., Gadzicka, E., Palczynski, C., and Szmigielski, S.: 1997, Ambulatory ECG monitoring in workers exposed to electromagnetic fields, J.Med.Eng.and Tech. 21(2), 41-46.Google Scholar
  33. Brendel, H., Niehaus, M., and Lerchl, A.: 2000, Direct suppression effects of weak magnetic fields (50 Hz and 16 2/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus), J.Pineal.Res. 29(4), 228-233.Google Scholar
  34. Breus, T. K., Baevskii, R. M., Nikulina, G. A., Chibisov, S. M., Chernikova, A. G., Pukhlianko, M., Oraevskii, V.N., Halberg, F., Cornelissen, G., and Petrov, V. M.: 1998, Effect of geomagnetic activity on the human body in extreme conditions and correlation with data from laboratory observations, Biofizika 43(5), 811-818.Google Scholar
  35. Brzezinski, A.: 1997, Melatonin in humans, N.Engl.J.Med. 336(3), 186-195.Google Scholar
  36. Bunin, G. R., Ward, E., Kramer, S., Rhee, C. A., and Meadows, A. T.: 1990, Neuroblastoma and parental occupation, Am.J.Epidemiol. 131(5), 776-780.Google Scholar
  37. Burch, J. B., Reif, J. S., Pittrat, C. A., Keefe, T. J., and Yost, M. G.: 1997, Cellular telephone use and excretion of a urinary melatonin metabolite. In: Annual Review of Research in Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, San Diego, CA, Nov. 9-13, P-52.Google Scholar
  38. Burch, J. B., Reif, J. S., Yost, M. G., Keefe, T. J., and Pittrat, C. A.: 1998, Nocturnal excretion of urinary melatonin metabolite among utility workers, Scand.J.Work Environ.Health. 24(3), 183-189.Google Scholar
  39. Burch, J. B., Reif, J. S., Yost, M. G., Keefe, T. J., and Pittrat, C. A.: 1999a, Reduced excretion of a melatonin metabolite among workers exposed to 60 Hz magnetic fields, Am.J.Epidemiology 150(1), 27-36.Google Scholar
  40. Burch, J. B., Reif, J. S., and Yost, M. G.: 1999b, Geomagnetic disturbances are associated with reduced nocturnal excretion of melatonin metabolite in humans, Neurosci.Lett. 266(3), 209-212.Google Scholar
  41. Burch, J. B., Reif, J. S., Noonan, C. W., and Yost, M. G.: 2000, Melatonin metabolite levels in workers exposed to 60-Hz magnetic fields: work in substations and with 3-phase conductors, J.of Occupational and Environmental Medicine 42(2), 13-142.Google Scholar
  42. Bureau, Y. R. and Persinger, M. A.: 1995, Decreased latencies for limbic seizures induced in rats by lithium-pilocarpine occur when daily average geomagnetic activity exceeds 20 nano Tesla, Neurosci.Lett. 192(2), 142-144.Google Scholar
  43. Bureau, Y. R., Persinger, M. A., and Parker, G. H.: 1996, Effect of enhanced geomagnetic activity on hypothermia and mortality in rats, Int.J.Biometeorology 39(4), 197-200.Google Scholar
  44. Campbell, W. H.: 1997, Introduction to Geomagnetic Fields, Cambridge University Press, Cambridge, U.K.Google Scholar
  45. Cannon, P. S. and Rycroft, M. J.: 1982, Schumann resonance frequency variations during sudden ionospheric disturbances, J.Atmos.Terrest.Physics 44(2), 201-206.Google Scholar
  46. Cantor, K. P., Stewart, P. A., Brinton, L. A., and Dosemeci, M.: 1995, Occupational exposures and female breast cancer mortality in the United States, Journal of Occupational Medicine 37(3), 336-348.Google Scholar
  47. Carney, R.M., Freedland, K. E., Stein, P. K., Skala, J. A., Hoffman, P., and Jaffe, A. S.: 2000, Change in heart rate and heart rate variability during treatment for depression in patients with coronary heart disease, Psychosom.Med. 62(5), 639-647.Google Scholar
  48. Chabot, V., Caldani, M., de Reviers, M. M., and Pelletier, J.: 1998, Localization and quantification of melatonin receptors in the diencephalon and posterior telencephalon of the sheep brain, J.Pineal.Res. 24(1), 50-57.Google Scholar
  49. Chapman, S.: 1936, The Earth's Magnetism, Methuen Co. Ltd., London.Google Scholar
  50. Chapman, F. W. and Jones, D. L.: 1964, Earth-Ionosphere resonances and the propagation of extremely low frequency radio waves, Nature 202, 654-657.Google Scholar
  51. Chernoshchekov, K. A.: 1989, A method for studying the effect of the geomagnetic field on the vital activities of microorganisms in the enteric family, Zh Mikrobiol.Epidemiol.Immunobiol. 9, 28-34.Google Scholar
  52. Chibisov, S. M., Breus, T. K., Levitin, A. E., and Drogova, G. M.: 1995, Biological effects of planetary magnetic storms, Biofizika 40(5), 959-968.Google Scholar
  53. Chou, Y. L.: 1972, Probability and Statistics for Decision Making, Holt, Rinehart and Winston, New York.Google Scholar
  54. Cliver, E. W., Boriakoff, V., and Bounar, K. H.: 1996, The 22-year cycle of geomagnetic and solar wind activity, J.Geophys.Res. 101(A12), 27091-27109.Google Scholar
  55. Conesa, J.: 1995, Relationship between isolated sleep paralysis and geomagnetic influences: a case study, Percept.Mot.Skills 80(3 Pt2), 1263-1273.Google Scholar
  56. Conesa, J.: 1997, Isolated sleep paralysis, vivid dreams and geomagnetic influences: II, Percept.Mot.Skills 8(2), 579-584.Google Scholar
  57. Cornelissen, G., Halberg, F., Obridko, V. N., and Breus, T. K.: 1998, Quasi-eleven year modulation of global and spectral features of geomagnetic disturbances, Biofizika 43(4), 677-680.Google Scholar
  58. Coyne, T. N. R. and Belrose, J. S.: 1972, The diurnal and seasonal variation of electron densities in the midlatitude D region under quiet conditions, Radio Science 7(1), 163-174.Google Scholar
  59. Craig, R. A.: 1965, The Upper Atmosphere: Meteorology and Physics, International Geophysics Series, Vol. 8, Academic Press, New York and London.Google Scholar
  60. Craven, M. and Essex, E. A.: 1987, Diurnal, seasonal and storm-time variability of the total electron content of the atmosphere north of Macquarie Island. Australian National Antarctic Research Expeditions, Research Note 56.Google Scholar
  61. Currier, N. L., Sun, L. Z., and Miller, S. C.: 2000, Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity, J.Neuroimmunol 104(2), 101-108.Google Scholar
  62. Davanipour, Z., Sobel, E., Bowman, J. D., Qian, Z., and Will, A. D.: 1997, Amyotropic lateral sclerosis and occupational exposure to electromagnetic fields, Bioelectromagnetics 18(1), 28-35.Google Scholar
  63. Davies, K.: 1996, Sudden ionospheric disturbances, Chapter III.3.11. In: W. Dieminger, G. K. Hartmann and R. Leitinger (eds), The Upper Atmosphere: Data Analysis and Interpretation, Spriner-Verlag, Berlin, Heidelberg and New York.Google Scholar
  64. Davis, S.: 1997, Weak residential magnetic fields affect melatonin in. J. Cowen (eds), Serotonin and Sleep Disorder, Wrightson Biomedical Publishing Co., Petersfield, U.K.Google Scholar
  65. Elliot, W. H. and Elliot, D. C.: 1997, Biochemistry and Molecular Biology, Oxford University Press, Oxford.Google Scholar
  66. Feychting, M., Schulgen, G., Olsen, J. H., and Ahlbom, A.: 1995. Magnetic fields and childhood cancer-a pooled analysis of two Scandinavian studies, European J.of Cancer 12, 2035-2039.Google Scholar
  67. Feychting, M., Floderous, B., and Ahlbom, A.: 2000, Parental occupational exposure to magnetic fields and childhood cancer (Sweden)', Cancer Causes Control 11(2), 151-156.Google Scholar
  68. Frey, A. H.: 1995, On the Nature of Electromagnetic Field Interactions with Biological Systems, Springer-Verlag, New York and R. G. Landes Co., Austin.Google Scholar
  69. Garcia-Maurino, S., Pozo, D., Carrillo-Vico, A., Calvo, J. R., and Guerrero, J. M.: 1999, Melatonin activates Th1 lymphocytes by increasing IL-12 production, Life Sci. 65(20), 2143-2150.Google Scholar
  70. Gavalas-Medici, R. and Day-Magdaleno, S. R.: 1976, Extremely low frequency, weak electric fields affect schedule controlled behaviour of monkeys, Nature (London) 261, 256-258.Google Scholar
  71. Ghione, S., Mezzasalma, L., Del Seppia, C., and Papi, F.: 1998, Do geomagnetic disturbances of solar origin affect arterial blood pressure?, J.Hum.Hypertension 12(11), 749-754.Google Scholar
  72. Graham, C., Cook, M. R., Cohen, H. D., and Gerkovich, M. M.: 1994, A dose response study of human exposure to 60 Hz electric and magnetic fields, Bioelectromagnetics 15, 447-463.Google Scholar
  73. Graham, C., Cook, M. R., Sastre, A., Riffle, D. W., and Gerkovich, M. M.: 2000, Multi-night exposure to 60 Hz magnetic fields: effects on melatonin and its enzymatic Metabolite, J.Pineal Res. 28(1), 1-8.Google Scholar
  74. Guardiola-Lemaitre, B.: 1998, Development of animal models for the chronobiotics of melatonin analogs, Therapie 53(5), 439-444.Google Scholar
  75. Gurfinkel' IuI, Liubimov, V. V., Oraevskii, V. N., Parfenova, L. M., and Iur'ev, A. S.: 1995, The effect of geomagnetic disturbances in capillary blood flow in ischemic heart disease patients, Biofizika 40(4), 793-799.Google Scholar
  76. Haigh, J. D.: 1996, The impact of solar variability on climate, Science 272, 981-984.Google Scholar
  77. Hamburger, S., Logue, J. N., and Sternthal, P. M.: 1983. Occupational exposure to non-ionizing radiation and an association with heart disease: an exploratory study, J.Chronic Diseases 36, 791-802.Google Scholar
  78. Hamer, J. R.: 1965, Biological entrainment of the human brain by low frequency radiation', NSL 65-199, Northrop Space Labs.Google Scholar
  79. Hamer, J. R.: 1969, Effects of low level, low frequency electric fields on time judgement, Fifth Intern. Biometeorological Congress, Montreaux, Switzerland.Google Scholar
  80. Hardell, L., Holmberg, B., Malker, H., and Paulsson, L. E.: 1995, Exposure to extremely low frequency electromagnetic fields and the risk of malignant diseases-an evaluation of epidemiological and experimental findings, Eur.J.Cancer Prevention, Suppl. 1, 3-107.Google Scholar
  81. Hargreaves J. K.: 1992, The Solar-terrestrial Environment, Cambridge University Press, Cambridge, U.K.Google Scholar
  82. Hicks, N., Zack, M., Caldwell, G. G., Fernbach, D. J., and Falletta, J. M.: 1984, Childhood cancer and occupational radiation exposure in parents, Cancer 53(8), 1637-1643.Google Scholar
  83. Hunt, A. E., Al-Ghoul, W. M., Gillette, M. U., and Dubocovich, M. L.: 2001, Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock, Am.J.Physiol.Cell.Physiol. 280(1), C110-118.Google Scholar
  84. Ishida, N., Kaneka, M., and Allada, R.: 1999, Biological clocks, Proc.Nat.Acad.Sci.USA 96, 8819-8820.Google Scholar
  85. Jenrow, K. A., Smith, C. H., and Liboff, A. R.: 1996, Weak extremely low frequency magnetic fields-induced regeneration anomalies in Planarian Dugesia tigrina, Bioelectromagnetics 17, 467-474.Google Scholar
  86. Johansen, C., Kock-Henriksen, N., Rasmussen, S., and Olsen, J. H.: 1999, Multiple Sclerosis among utility workers, Neurology 52, 1279-1282.Google Scholar
  87. Johansen, C.: 2000, Exposure to electromagnetic fields and risk of central nervous system disease in utility workers, Epidemiology 11(5), 539-543.Google Scholar
  88. Johnson, C. C. and Spitz, M. R.: 1989, Childhood nervous system tumors: an assessment of risk associated with parental occupations involving the use, repair or manufacture of electrical and electronic equipment, Int.J.Epidemiol. 18(4), 756-762.Google Scholar
  89. Juutilainen, J., Matilainen, P., Saarikoski, S., Laara, E., and Suonio, S.: 1993, Early pregnancy loss and exposure to 50 Hz magnetic fields, Bioelectromagnetics 14(3), 229-236.Google Scholar
  90. Juutilainen, J., Stevens, R. G., Anderson, L. E., Hansen, N. H., Kilpelainen, M., Laitinen, J. T., Sobel, E., and Wilson, B. W.: 2000, Nocturnal 6-hydroxymelatonin sulphate excretion in female workers exposed to magnetic fields, J.Pineal Res. 28(2), 97-104.Google Scholar
  91. Kallen, B., Malmquist, G., and Moritz, U.: 1982, Delivery outcome among physiotherapists in Sweden: is Non-ionizing Radiation a Fetal Hazard?, Archives of Environmental Health 37(2), 81-84.Google Scholar
  92. Kandel, E. R., Schwartz, J. H., and Jessell, J. M.: 2000, Principles of Neural Science, McGraw-Hill, New York.Google Scholar
  93. Karasek, M., Woldanska-Okonska, M., Czernicki, J., Zylinska, K., and Swietoslawski, J.: 1998, Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces ]melatonin concentrations in humans, J.Pineal Res. 25(4), 240-244.Google Scholar
  94. Karlov, V. A., Selitskii, G. V., and Sorokina, N. D.: 1996, The action of a magnetic field on the bioelectrical activity of the brain in healthy subjects and epilepsy patients, Zh.Nevropatol Psikhiatr Im S S Korsakova 96(2), 54-58.Google Scholar
  95. Kaczmarek, L. K. and Adey, W. R.: 1973, The efflux of 45 Ca 2+ and 3H-gamma-aminobutyric acid from the cat cerebral cortex, Brain Res. 63, 331-342.Google Scholar
  96. Kay, R. W.: 1994, Geomagnetic storms: association with incidence of depression as measured by hospital admission, Br.J.Psychiatry 164(3), 403-409.Google Scholar
  97. Kerut, E. K., McKinnie, J. J., and Giles, T. D.: 1999, Modern evaluation of the hypertensive patient: autonomic tone in cardiovascular disease and assessment of heart rate variability, Blood Press Monit. 4(Suppl. 1), S7-S14.Google Scholar
  98. King, G. A. M. and Lawden, M. D.: 1962, Variations of some ionospheric parameters over a solar cycle, J.Atmos.Terrest.Physics 24, 565-568.Google Scholar
  99. Knox, E. G., Armstrong, E., Lancashire, R., Wall, M., and Hayes, R., 1979, Heart attacks and geomagnetic activity, Nature 281, 564-565.Google Scholar
  100. Kolodynski, A. A. and Kolodynska, V. V.: 1996, Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia, The Science of the Total Environment 180, 87-93.Google Scholar
  101. Komarov, F. I., Oraevskii, V. N., Sizov, Iu. P., Tsirul'nik, L. B., Kanoidi, Kh. D., Ushakov, I. B., Shalimov, P.M., Kimlyk, M. V., and Glukhov, D. V.: 1998, Heliogeophysical factors and aviation accidents', Biofizika 43(4), 742-745.Google Scholar
  102. König, H. L.: 1974a, ELF and VLF signal properties: physical characteristics. In: M. A. Persinger (ed.), ELF and VLF Electromagnetic Field Effects, Plenum Press, New York.Google Scholar
  103. König, H. L.: 1974b, Behavioural changes in human subjects associated with ELF electric fields. In: M. A. Persinger (ed.), ELF and VLF Electromagnetic Field Effects, Plenum Press, New York.Google Scholar
  104. Kopanev, V. I., Efimenko, G. D., and Shakula, A. V.: 1979, Biological effect of a hypogeomagnetic environment on an organism, Biol.Bull.Acad.Sci.USSR 6(3), 289-298.Google Scholar
  105. Larsen, A. I., Olsen, J., and Svane, O.: 1991, Gender specific reproductive outcome and exposure to high frequency electromagnetic radiation among physiotherapists, Scand.J.Work Environ.Health 17, 324-329.Google Scholar
  106. Lai, H. and Singh, N. P.: 1996. Single-and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation, Int.J.Radiation Biology 69(4), 513-521.Google Scholar
  107. Lai, H. and Singh, N. P.: 1997a, Melatonin and N-tert-butyl-a-phenylnitrone block 60 Hz magnetic field-induced DNA single-and double-strands breaks in Rat Brain cells, J.Pineal Res. 22, 152-162.Google Scholar
  108. Maestroni, G. J.: 1995, T-Helper-2 Lymphocytes as peripheral target of melatonin signalling, J.Pineal Res. 18, 84-89.Google Scholar
  109. Makarov, L. M.: 1998, Role of geomagnetic field in development of biorhythm profile of venticular arrhythmia onset, Klin.Med.(Mosk), 76(6), 31-35.Google Scholar
  110. Makarova, I. I.: 2000, Geomagnetic effects on cortico-caudal mechanisms of auditory stimuli processing in cats, Aviakosm.Ekolog.Med. 34(3), 47-51.Google Scholar
  111. Malin, S. R. C. and Srivastava, B. J.: 1979, Correlation between heart attacks and magnetic activity, Nature 277, 646-648.Google Scholar
  112. Malmivuo, J. and Plonsey, R.: 1995, Bioelectromagnetism: Principles and applications of bioelectric and biomagnetic fields, Oxford University Press, Oxford, England.Google Scholar
  113. Matsushita, S. and Campbell, W. H.: 1967, Physics of geophysical phenomena, Academic Press, New York.Google Scholar
  114. Michon, A., Koren, S. A., and Persinger, M. A.: 1996, Attempts to simulate the association between geomagnetic activity and spontaneous seizures in rats using experimentally generated magnetic fields, Percept.Mot.Skills 82(2), 619-626.Google Scholar
  115. Mikulecky, M., Moravcikova, C., and Czanner, S.: 1996, Lunisolar tidal waves, geomagnetic activity and epilepsy in the light of multivariate coherence, Braz.J.Med.Biol.Res. 29(8), 1069-1072.Google Scholar
  116. Mitre, A. P.: 1974, Ionospheric effects of solar flares, D. Reidel Publishing Co., Boston, U.S.A.Google Scholar
  117. Naitoh, N., Watanabe, Y., Matsumura, K., Murai, I., Kobayashi, K., Imai-Matsumura, K., Ohtuka, H., Takagi, K., Miyake, Y., Satoh, K., and Watanabe, Y.: 1998, Alteration by maternal pinealectomy of fetal and neonatal melatonin and dopamine D1 receptor binding in the suprachaismatic neclei, Biochem Biophys Res Commun. 253(3), 850-854.Google Scholar
  118. Nicholaenka, A. P., Hayakawa, M., and Hobara, Y.: 1996, Temporal variations of the global lightning activity deduced from the Schumann resonance data, J.Atmosph.Terrest.Physics 58(15), 1699-1709.Google Scholar
  119. Nicolet, M. and Aikin, A. C.: 1960, The formation of the D region of the ionosphere, J.Geophysical Research 65, 1469-1483.Google Scholar
  120. Nikolaev, Y. S., Rudakov, Y. Y., Mansurov, S. M., and Mansurova, L. G.: 1976, Interplanetary magnetic field sector structure and disturbances of the central nervous system activity, Reprint N 17a, Acad. Sci USSR, 29 pp, IZMIRAN, Moscow.Google Scholar
  121. Novikova, K. F. and Ryvkin, B. A.: 1977, Solar activity and cardiovascular diseases, In: M. N. Gnevyshev and A. I. Ol' (eds), Effects of solar Activity on the Earth's Atmosphere and Biosphere, pp 184-200, Acad. Sci. USSR, English trans, Israel Prog. Sci. Trans, Jerusalem.Google Scholar
  122. O'Connor, R. P. and Persinger, M. A.: 1996, Increases in geomagnetic activity associated with increases in thyroxine levels in a single patient: implications for melatonin levels, Int.J.Neurosci. 88(3-4), 243-247.Google Scholar
  123. O'Connor, R. P. and Persinger, M. A.: 1997, Geophysical variables and behavior LXXXII. Strong association between sudden infant death syndrome and increments of global geomagnetic activity-possible support for the melatonin hypothesis, Percept.Mot.Skills 84(2), 395-402.Google Scholar
  124. O'Connor, R. P. and Persinger, M. A.: 1999, Geophysical variables and behavior: LXXXV. Sudden infant death, bands of geomagnetic activity, and pcl (0.2-5 Hz) geomagnetic micropulsations, Percept.Mot.Skills 88(2), 391-397.Google Scholar
  125. Olshan, A. F., DeRoos, A. J., Teschke, K., Neglia, J. P., Stram, D. O., Pollock, B.H., and Castleberry, R. P.: 1999, Neuroblastoma and parental occupation, Cancer Causes Control 10(6), 539-549.Google Scholar
  126. Oraevskii, V. N., Kuleshova, V. P., Gurfinkel', Iu. F., Guseva, A. V., and Rapoport, S. I.: 1998a, Medico-biological effect of natural electromagnetic variations, Biofizika 43(5), 844-888.Google Scholar
  127. Oraevskii, V. N., Breus, T. K., Baevskii, R. M., Rapoport, S. I., Petrov, V. M., Barsukova, Zh. V., Gurfinkel', IuI, and Rogoza, A. T.: 1998b, Effect of geomagnetic activity on the functional status of the body, Biofizika 43(5), 819-826.Google Scholar
  128. Osborne, N. N.: 1994, Serotonin and melatonin on the iris/ciliary processes and their involvement in intraocular pressure, Acta Neurobiolo Exp (Warsz) 54 Suppl, 57-64.Google Scholar
  129. Otto, W., Hempel, W. E., Wagner, C. U., and Best, A.: 1982, Various periodical and aperiodical variations of heart infarct mortality in the DRG [In German], Z.Gesamte Inn.Med. 37(22), 756-763.Google Scholar
  130. Ouellet-Hellstrom, R. and Stewart, W. F.: 1993, Miscarriages among Female Physical Therapists who report using radio-and microwave-frequency electromagnetic radiation, Am.J.Epidemiology 138(10), 775-786.Google Scholar
  131. Pang, S. F., Li, L., Ayre, E. A., Pang, C. S., Lee, P. P., Xu, R. K., Chao, P. H., Yu, Z. H., and Shiu, S. Y.: 1998, Neuroendocrinology of melatonin in reproduction: recent developments, J.Chem.Neuroanat. 14(3-4), 157-166.Google Scholar
  132. Perry, F. S., Reichmanis, M., Marino, A., and Becker, R. O.: 1981, Environmental power-frequency magnetic fields and suicide, Health Phys. 41(2), 267-277.Google Scholar
  133. Persinger, M. A., Richards, P. M., and Koren, S. A.: 1994, Differential ratings of pleasantness following right and left hemispheric application of low energy magnetic fields that stimulate long-term potentiation, Int.J.Neurosci. 79(3-4), 191-197.Google Scholar
  134. Persinger, M. A.: 1995, Sudden unexpected death in epileptics following sudden, intense, increases in geomagnetic activity: prevalence of effect and potential mechanisms, Int.J.Biometeorol. 38(4), 180-187.Google Scholar
  135. Persinger, M. A.: 1995a, Geophysical variables and behavior: LXXIX. Overt limbic seizures are associated with concurrent and premidscotophase geomagnetic activity: synchronization by prenocturnal feeding, Percept.Mot.Skills 81(1), 83-93.Google Scholar
  136. Persinger, M. A. and Richards, P. M.: 1995, Vestibular experiences of humans during brief periods of partial sensory deprivation are enhanced when daily geomagnetic activity exceeds 15-20 nT, Neurosci.Lett. 194(1-2), 69-72.Google Scholar
  137. Persinger, M. A.: 1997, Geomagnetic variables and behavior: LXXXIII. Increased geomagnetic activity and group aggression in chronic limbic epileptic male rats, Percept.Mot.Skills 85(3 Pt 2), 1376-1378.Google Scholar
  138. Persinger, M. A.: 1999, Wars and increased solar-geomagnetic activity: aggression or change in intraspecies dominance?, Percept.Mot.Skills 88(3 Pt 2), 1351-1355.Google Scholar
  139. Petrichuk, S. V., Faitinova, A. A., Shishchenko, V. M., and Nartsissov, R. P.: 1992, Modulation of energy metabolism of lymphocytes in children by natural physical factors, Biofizika 37(4), 720-728.Google Scholar
  140. Petrichuk, S. V., Shishchenko, V. M., Dukhova, Z. N., Gaitinova, A. A., Nartsissov, R. P., and Sizov, IuP.: 1998, Effect of natural physical factors of the environment on the condition of pregnant women with normal pregnancy, Biofizika 43(5), 853-856.Google Scholar
  141. Pfluger, D. M. and Minder, C. E.: 1996, Effects of 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers, J.Pineal Res. 21(2), 91-100.Google Scholar
  142. Pikin, D. A., Gurginkel', Iu.I., and Oraevskii, V. N.: 1998, Effect of geomagnetic disturbances on the blood coagulation system in patients with ischemic heart disease and prospects for correction medication [In Russian], Biofizika 43(4), 617-622.Google Scholar
  143. Polk, C.: 1982, Schumann Resonances, In: CRC Handbook of Atmospherics, Vol. 1, pp 111-177Google Scholar
  144. Polikarpov, N. A.: 1996, The relationship of the indices of solar-geomagnetic activity and the auto-fluctuations in the biological properties of Staphylococcus aureus 209 subcultures in vitro [In Russian], Zh.Mikrobiol.Epidemiol.Immunobiol. (1), 27-30.Google Scholar
  145. Poon, A. M., Liu, Z. M., Pang, C. S., Brown, G. M., and Pang, S. F.: 1994, Evidence for a direct action of melatonin on the immune system, Biol.Signals 3(2), 107-117.Google Scholar
  146. Ptitsyna, N. G., Villoresi, G., Kopytenko, Y. A., Kudrin, V. A., Tyasto, M. I., Kopytenko, E. A., Iucci, N., Voronov, P. M., and Zaitsev, D. B.: 1996, Coronary heart diseases: assessment of risck associated with work exposure to ultalow-frequency magnetic fields, Bioelectromagnetics 17(6), 436-444.Google Scholar
  147. Rajaram, M. and Mitra, S.: 1981, Correlation between convulsive seizure and geomagnetic activity, Neurosci.Lett. 24(2), 187-191.Google Scholar
  148. Rapoport, S. I., Blodypakova, T. D., Malinovskaia, N. K., Oraevskii, V. N., Meshcheriakova, S. A., Breus, T. K., and Sosnovskii, A. M.: 1998, Magnetic storms as a stress factor, Biofizika 43(4), 632-639.Google Scholar
  149. Raps, A., Stoupel, E., and Shimshoni, M.: 1991, Solar activity and admissions of psychiatric inpatients, relations and possible implications of seasonality, Isr.J.Psychiatry Relation.Sci. 28(2), 50-59.Google Scholar
  150. Rawer, K. 1984a, Modelling of neutral and ionized atmospheres, In: Encyclopaedia of Physics, Vol. 49/7, Springer, New York, pp. 223-250.Google Scholar
  151. Resch, J.: 1995, Geographic distribution of multiple sclerosis and comparison with geophysical values, oz.Praventivmed 40(3), 161-171.Google Scholar
  152. Reiter, R. J.: 1994, Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer, Rev.Environ.Health 10(3-4), 171-86.Google Scholar
  153. Reiter, R. J.: 1995, Oxidative processes and antioxidative defense mechanisms in the aging brain, FASEB J. 9(7), 526-533.Google Scholar
  154. Riabykh, T. P. and Bodrova, N. B.: 1992, Correlation of the probability of occurrence of breast neoplasms with solar activity, Biofizika 37(4), 710-715.Google Scholar
  155. Reiter, R. J. and Robinson, J: 1995, Melatonin: Your Body's Natural Wonder Drug, Bantam Books, New York.Google Scholar
  156. Renton, C. M. and Persinger, M. A.: 1997, Elevations of complex partial epileptic-like experiences during increased geomagnetic activity for women reporting 'pre-menstral syndrome', Percept.Mot.Skills 86(1), 240-242.Google Scholar
  157. Robinette, C. D., Silverman, C., and Jablon, S.: 1980, Effects upon health of occupational exposure to microwave radiation (radar), Am.J.Epidemiol. 112(1), 39-53: 1980.Google Scholar
  158. Robson, J.: 1967, Basic Tables in Physics, McGraw-Hill Book Company, New York.Google Scholar
  159. Rosen, L. A., Barber, I., and Lyle D. B.: 1998, A 0.5 G, 60 HZ magnetic field suppresses melatonin production in pinealocytes, Bioelectromagnetics 19, 123-127.Google Scholar
  160. Salo, T. M., Jula, A. M., Fiha, J. S., Kantola, I. M., Pelttari, L., Rauhala, E., Metsala, T. M., Jalonen, J. O., Viopoi-Pulkki, L. M., and Viikari, J. S., 2000, Comparison of autonomic withdrawal in men with onstructive sleep apnea syndrome, systemic hypotension, and neither condition, Am.J.Cardiol. 85(2), 232-238.Google Scholar
  161. Sandodze V. I., Svanidze, I. K., and Didimova, E. V.: 1995, Effects of hypomagnetic fields on motility of the cilia of ependymal cells in vivo, Radiats.Biol.Radioecol. 35(1): 19-22.Google Scholar
  162. Sandyk, R. 1992, Alpha rhythm and the pineal gland, Int.J.Neurosci. 63(3-4), 221-227.Google Scholar
  163. Sandyk, R. and Anninos, P. A.: 1992a, Attenuation of epilepsy with application of external magnetic fields: a case report, Int.J.Neurosci. 66(1-2), 75-85.Google Scholar
  164. Sandyk, R. and Anninos, P. A.: 1992b, Magnetic fields alter the circadian periodicity of seizures, Int.J.Neurosci. 63(3-4), 265-274.Google Scholar
  165. Sastre, A., Cook, M. R., and Graham, C.: 1998, Nocturnal exposure to intermittent 60 Hz magnetic fields alters human cardiac rhythm, Bioelectromagnetics 19, 98-106.Google Scholar
  166. Satori, G.: 1996, Monitoring Schumann Resonances-II Daily and Seasonal frequency variations, J.Atmos.Terrest.Physics 58(13), 1483-1488.Google Scholar
  167. Savitz, D. A., Loomis, D. P., and Tse, C. K.: 1998, Electrical occupations and neurodegenerative disease: analysis of U.S. mortality data, Arch.Environ.Health 53(1), 71-74.Google Scholar
  168. Savitz, D. A., Liao, D., Sastre, A., Kleckner, R. C., and Kavet, R.: 1999, Magnetic field exposure and cardiovascular disease mortality among electric utility workers, Am.J.Epid. 149(20), 135-142.Google Scholar
  169. Savitz, D. A., Liao, D., Sastre, A., Kleckner, R. C., and Kavet, R.: 1999a, Re: “Magnetic field exposure and cardiovascular disease mortality among electric utility workers”, The authors reply, Am.J.Epid. 150(11), 1258-1259.Google Scholar
  170. Savitz, D. A., Cai, J., Van Wijngaarden, E., Loomis, D., Mihlan, G., Dufort, V., Kleckner, R. C., Nylander-French, L., Kromhout, H., and Zhou, H., 2000, Am.J.Ind.Med. 38(4), 417-425.Google Scholar
  171. Schneggenburger, R. and Neher, E., 2000, Intracellular calcium dependence of transmitter release rates at a fast central synapse, Nature 406(6798), 889-893.Google Scholar
  172. Schumann, W. O.: 1952, Uber de strahlundslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhulle umgeben ist, Z.Naturforsch 7a, 149.Google Scholar
  173. Schumann, W. O. and König, H. L.: 1954, Uber die beobachtung von atmospherics bei geringsten frequenzen, Naturwissenschaften 41, 183.Google Scholar
  174. Schwartz, J. L., House, D. E., and Mealing, A. R.: 1990, Exposure of frog hearts to CW or amplitude modulated VHF fields: selective efflux of calcium ions at 16 Hz, Bioelectromagnetics 11, 349-358.Google Scholar
  175. SEAMIC: 1997, Recent trends in health statistics in Southeast Asia 1974-1993, Publication No. 77, Southeast Asian Medical Information Center, Tokyo.Google Scholar
  176. Selitskii, G. V., Karlov, V. A., and Sorokina, N. D.: 1999, The influence of hypogeomagnetic field on the bioelectric activity of the brain in epilepsy, Zh.Nevrol.Psikhiatr.Im.S.S.Korsakova. 99(4), 48-50.Google Scholar
  177. Sentman, D. D. and Fraser, B. J.: 1991, Simultaneous observations of Schumann Resonances in California and Australia: Evidence for intensity modulation by local height of the D Region, J.Geophys.Res. 96(A9), 15973-15984.Google Scholar
  178. Sitar, J.: 1990, The causality of lunar changes on cardiovascular mortality [In Czech], Cas.Lek.Cesk. 129(45), 1425-1430.Google Scholar
  179. Smulevich, V. B., Solionova, L. G., and Belyakova, S. V.: 1999, Parental occupation and other factors and cancer risk in children II, Int.J.Cancer 83(60), 718-722Google Scholar
  180. Shumilov, O. I., Kasatkina, E. A., and Raspopov, O. M.: 1998, Heliomagnetic activity and level of extreme situations at the Polar cap [In Russian], Biofizika 43(4), 670-676.Google Scholar
  181. Sobel, E., Davanipour, Z., Sulkava, R., Erkinjuntti, T., Wikstrom, J., Henderson, V. W., Bucjwalter, G., Bowman, D., and Lee, P-J.: 1995, Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer's Disease, Am.J.Epidemiol 142(5), 515-524.Google Scholar
  182. Sobel, E., Dunn, M., Davanipour, D. V. M., Qian, M. S., and Chui, M. D.: 1996, Elevated risk of Alzheimer's disease among workers with likely electromagnetic field exposure, Neurology 47(12), 1477-1481.Google Scholar
  183. Sparks, D. L. and Hunsaker, J. C.: 1988, The pineal gland in sudden infant death syndrome: preliminary observations, J.Pineal Res. 5, 111-118.Google Scholar
  184. Spitz, M. R. and Johnson, C. C.: 1985, Neuroblastoma and parental occupation. A case-control analysis, Am.J.Epidemiol. 121(6), 924-929.Google Scholar
  185. Sprott, J. C.: 1990, Numerical Recipes: Routines and Examples in Basic, Cambridge University Press, Cambridge.Google Scholar
  186. Stark, K. D. C., Krebs, T., Altpeter, E., Manz, B., Griol, C., and Abelin, T.: 1997, Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle, J.Pineal Res. 22, 171-176.Google Scholar
  187. Stewart, W., 2000, Mobile phones and health, Independent Expert Group on Mobile Phones, (IEGMP) U.K. Parliamentary Enquiry, London.Google Scholar
  188. Stoupel, E., Hod, M., Shimshoni, M., Friedman, S., Ovadia, J., and Keith, L.: 1990, Monthly cosmic activity and pregnancy induced hypertension, Clin.Exp.Obstet.Gynecol. 17(1), 7-12.Google Scholar
  189. Stoupel, E., Martfel, J., and Rotenberg, Z.: 1991, Admissions of patients with epileptic seizures (E) and dizziness (D) related to geomagnetic and solar activity levels: differences in female and male patients, Med.Hypothesis 36(4), 384-388.Google Scholar
  190. Stoupel, E. and Shimshoni, M.: 1991, Hospital cardiovascular deaths and total distribution of deaths in 180 consecutive months with difference cosmic physical activity: a correlation study (1974-1988), Int.J.Biometeorology 35(1), 6-9.Google Scholar
  191. Stoupel, E.: 1993, Sudden cardiac deaths and ventricular extrasystoles on days of four levels of geomagnetic activity, J.Basic Physiol.Pharmacol. 4(4), 357-366.Google Scholar
  192. Stoupel, E., Goldenfeld, M., Shimshoni, M., and Siegel, R.: 1993, Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity, Int.J.Biometeorology 37(1), 42-45.Google Scholar
  193. Stoupel, E., Martfel, J. N., and Rotenberg, Z.: 1994, Paroxysmal atrial fibrulation and stroke (cerebrovasular accidents) in males and females above and below the age 65 on days of different geomagnetic activity levels, J.Basic.Clin.Physiol.Pharmacol. 5(3-4), 315-329.Google Scholar
  194. Stoupel, E., Abramson, E., Sulkes, J., Martfel, J., Stein, N., Handelman, M., Shimshoni, M., Zadka, P., and Gabbay, U.: 1995a, Relationship between suicide and myocardial infarction with regard to changing physical environmental conditions, Int.J.Biometeorol. 38(4), 199-203Google Scholar
  195. Stoupel, E., Petrauskiene, J., Kalediene, R., Abramson, E., and Sulkes, J.: 1995b, Clinical cosmobiology: the Lithuanian study 1990-1992, Int.J.Biometeorology 38(4), 204-208.Google Scholar
  196. Stoupel, E., Petrauskiene, J., Kalediene, R., Domarkiene, S., Abramson, E., and Sulkes, J.: 1996, Distribution of deaths from ischemic heart disease and stroke. Environmental and aging influences in men and women, J.Basic.Clinical Physiol.Pharmacol. 7(4), 303-319.Google Scholar
  197. Stoupel, E., Abramson, J., Domarkiene, S., Shimshoni, M., and Sulkes, J.: 1997, Space proton flux and the temporal distribution of cardiovascular deaths, Int J Biometeorol 40(2), 113-116.Google Scholar
  198. Stoupel, E., Petrauskiene, J., Abramson, E., Kalediene, R., Israelovich, P., and Sulkes, J.: 1999, Relationship between deaths from stroke and ischemic heart disease: Environmental implications, J.Basic.Clinical Physiol.Pharmacol. 10(2), 135-145.Google Scholar
  199. St Pierre, L. and Persinger, M. A.: 1998, Geophysical variables and behavior: LXXXIV. Quantitative increases in group aggression in male epileptic rats during increases in geomagnetic activity, Percept.Mot.Skills 86(3 Pt 2), 1392-1394.Google Scholar
  200. Svanidze, I. K., Sandodze, V. Ia., Didimova, E. V., Chkhikvadze, T. I., Portnoi, V. N., and Razdol'skii, A. S.: 1994, The effect of hypo-and hypermagnetic fields on the motor activity of the ciliary apparatus of the ependymal cells [In Russian], Radiats.Biol.Radioecol. 34(1), 100-104.Google Scholar
  201. Szmigielski, S.: 1996, Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation, Science of the Total Environment 180, 9-17.Google Scholar
  202. Tambiev, A. E., Medvedev, S. D., and Egorova, E. V.: 1995, The effect of geomagnetic disturbances on the functions of attention and memory [In Russian], Aviakosm.Ekolog.Med. 29(3), 43-45.Google Scholar
  203. Tang, Y. and Othmer, H. G.: 1995, Frequency encoding in excitable systems with applications to calcium oscillations, Proc Natl.Acad.Sci.USA 92(17), 7869-7873.Google Scholar
  204. Taskinen, H., Kyyronen, P., and Hemminki, K.: 1990, Effects of ultrasound, shortwaves and physical exertion on pregnancy outcome in physiotherapists, J.Epidemiol, Commun.Health 44, 196-210.Google Scholar
  205. Tell, R. A. and Mantiply, E. D.: 1980, Population exposure to VHF and UHF broadcast radaition in the United States, Proc IEEE 68(1), 4-10.Google Scholar
  206. Tran, A. and Polk, C.: 1979, Schumann resonances and electrical conductivity of the atmosphere and lower ionosphere-I. Effects of conductivity at various altitudes on resonance frequencies and attenuation, J.Atmos.Terrest.Physics 41, 1241-1248.Google Scholar
  207. Thomas, L., Drew, J. E., Abramovich, D. R., and Williams, L. M.: 1998, The role of melatonin in the human fetus, Int.J.Mol.Med. 1(3), 539-543.Google Scholar
  208. Titheridge, J. E.: 1962, The electron density in the lower ionosphere, J.Atmos.Terr.Phys. 24, 269-282Google Scholar
  209. Tunyi, I. and Tesarova, O.: 1991, Suicide and geomagnetic activity [In Slovak], Soud.Lek. 36(1-2), 1-11.Google Scholar
  210. Tynes, T., Reitan, J. B., and Andersen, A.: 1994, Incidence of cancer among workers in Norwegian hydroelectric power companies, Scan.J.Work Environ.Health 20(5), 339-344.Google Scholar
  211. Usenko, G. A.: 1992, Psychosomatic status and the quality of the piloting in fliers during geomagnetic disturbances, Aviakosm.Ekolog.Med. 26(4), 23-27.Google Scholar
  212. Vagero, D., Ahlbom, A., Olin, R., and Sahlsten, S.: 1985, Cancer morbidity among workers in the telecommunication industry, Br.J.Ind.Med. 42, 191-195.Google Scholar
  213. Van Wijngaarden, E., Savitz, D. A., Kleckner, R. C., Cai, J. and Loomis, D., 2000, Exposure to electromagnetic fields and suicide among electric utility workers: a nested case-control study, Occup.Environ.Med. 57, 258-263.Google Scholar
  214. Vanecek, J.: 1998, Cellular mechanisms of melatonin action, Physiol.Rev. 78(3), 687-721.Google Scholar
  215. Vaughan, T. L., Daling, J. R., and Starzyk, P. M.: 1984, Fetal death and maternal occupation, J.Occup.Med., 676-678.Google Scholar
  216. Verge, D. and Calas, A., 2000, Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches, J.Chem.Neuroanat. 18(1-2), 41-56.Google Scholar
  217. Verkasalo, P. K., Kaprio, J., Varjonen, J., Romanov, K., Heikkila, K., and Koskenvuo, M.: 1997, Magnetic fields of transmission lines and depression, Am.J.Epidemiology 146(12), 1037-1045.Google Scholar
  218. Vignati, M. and Giuliani, L.: 1997, Radiofrequency exposure nerar high-voltage lines, Environmental Health Perspectives 105(6), 1569-1573.Google Scholar
  219. Villoresi, G., Ptitsyna, N. G., Tiasto, M. I., and Iucci, N.: 1998, Myocardial infarct and geomagnetic disturbances: analysis of data on morbidity and mortality [In Russian], Biofizika 43(4), 623-632.Google Scholar
  220. Viswanathan, M., Laitinen, J. T., and Saavedra, J. M.: 1993, Vascular melatonin receptors, Biol.Signals 2(4), 221-227.Google Scholar
  221. Vriend, J., Borer, K. T., and Thliveris, J. A.: 1987, Melatonin, its antagonism of thyroxine's antisomatotrophic activity in male Syrian hamsters, Growth 51(1), 35-43.Google Scholar
  222. Wang, S. G. 1989, 5-HT contents change in peripheral blood of workers exposed to microwave and high frequency radiation, Chung Hua Yu Fang I Hsueh Tsa Chih 23(4), 207-210.Google Scholar
  223. Walleczek, J: 1992, Electromagnetic field effects on cells of the immune system: the role of calcium signalling, FASEB J. 6(13), 3177-3185.Google Scholar
  224. Watanabe, Y., Hillman, D. C., Otsuka, K., Bingham, C., Breus, T. K., Cornelissen, G., and Halberg, F.: 1994, Cross-spectral coherence between geomagnetic disturbance and human cardiovascular variables at non-societal frequencies, Chronobiologia 21(3-4), 265-272.Google Scholar
  225. Wertheimer, N. and Leeper, E.: 1986, Possible effects of electric blankets and heated waterbeds on fetal development, Bioelectromagnetics 7, 13-22.Google Scholar
  226. Wever, R.: 1967, Uber die Beeinflussung der circadianen Periodik ees Menschen durch schwache elektromagnetische Felder, Z.vergl Physiol 56, 111-128.Google Scholar
  227. Wever, R.: 1968, Einfluss schwacher elektro-magnetischer Felder auf die circadiane Periodik des Menschen, Naturwissenschaften 55, 29-32.Google Scholar
  228. Wever, R.: 1973, Human circadian rhythms under the influence of weak electric fields and different aspects of these studies, Int.J.Biometeorology 17, 227-232.Google Scholar
  229. Wever, R.: 1974, ELF-effects on Human Circadian Rhythms, pp. 101-144, In: M. A. Persinger (ed.), ELF and VLF Electromagnetic Field Effects, Plenum Press, New York.Google Scholar
  230. Whitfield, J. F.: 1992, Calcium signals and cancer, Crit.Rev.Oncolog. 3(1-2), 55-90.Google Scholar
  231. Wilkins, J. R. and Hundley, V. D.: 1990, Parental occupational exposure to electromagnetic fields and neuroblastoma in offspring, Am.J.Epidemiol. 131(6), 995-1008.Google Scholar
  232. Wilkins, J. R. and Wellage, L. C.: 1996, Brain tumor risk in offspring of men occupationally exposed to electric and magnetic fields, Scand.J.Work Environ.Health 22(5), 339-345.Google Scholar
  233. Williams, E. R.: 1992, The Schumann Resonance: A global tropical thermometer, Science 256, 1184-1187.Google Scholar
  234. Wilson, B. W., Wright, C. W., Morris, J. E., Buschbom, R. L., Brown, D. P., Miller, D. L., Sommers-Flannigan, R., and Anderson, L.E.: 1990, Evidence of an effect of ELF electromagnetic fields on human pineal gland function, J.Pineal Res. 9(4), 259-269.Google Scholar
  235. Wood, A. W., Armstrong, S. M., Sait, M. L., Devine, L., and Martin, M. J.: 1998, Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure, J.Pineal Res. 25(2), 116-127.Google Scholar
  236. Yaga, K., Reiter, R. J., Manchester, L. C., Nieves, H., Sun, J. H., and Chen L. D.: 1993, Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod, Brain Res.Bull. 30(1-2), 153-156.Google Scholar
  237. Zaitseva, S. A. and Pudovkin, M. I.: 1995, Effect of solar and geomagnetic activity on population dynamics among residents of Russia [In Russian], Biofizika 40(4), 861-864.Google Scholar
  238. Zatz, M.: 1989, Relationship between linght, calcium influx and cAMP in the acute regulation of melatonin production in cultured chick pineal cells, Brain Res. 477, 14-18.Google Scholar
  239. Zawilska, J. B. and Nowak, J. Z.: 1990, Calcium influx through voltage-sensitive calcium channels regulates in vivo serotonin N-acetyltransferase (NAT) activity in hen retina and pineal gland, Neurosci.Lett. 118(1), 17-20.Google Scholar
  240. Zawilska, J. B., Woldan-Tambor, A., and Nowak, J. Z.: 1998, Effects of calcium ions and substances affecting Ca2+-regulated mechanisms on histamine-evoked stimulation of cyclic AMP formation in chick pineal gland, Pol.J.Pharmacol. 50(4-5), 307-314.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Neil Cherry
    • 1
  1. 1.Environmental Management and Design DivisionLincoln UniversityCanterburyNew Zealand

Personalised recommendations