Minds and Machines

, Volume 12, Issue 2, pp 181–201

Reflections on Gödel's and Gandy's Reflections on Turing's Thesis

  • David Israel
Article

Abstract

We sketch the historical and conceptual context of Turing's analysis of algorithmic or mechanical computation. We then discuss two responses to that analysis, by Gödel and by Gandy, both of which raise, though in very different ways. The possibility of computation procedures that cannot be reduced to the basic procedures into which Turing decomposed computation. Along the way, we touch on some of Cleland's views.

abstract machines algorithmic computation Church-Turing thesis computations effective computation Gandy machines Turing machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermaun, W. (1928), 'On Hilbert's Construction of the Real Number', in Van Heijenoort (1967), pp. 493–507.Google Scholar
  2. Church, A. (1936a), 'A note on the Entscheidungsproblem', Journal of Symbolic Logic 1, pp. 40–41, pp. 101–102.Google Scholar
  3. Church, A. (1936b), 'An Unsolvable Problem of Elementary Number Theory', American Journal of Mathematics 58, pp. 345–363.Google Scholar
  4. Cleland, C. (1993), 'Is the Church-Turing Thesis True', Minds and Machines 3, pp. 283–312.Google Scholar
  5. Cleland, C. (1995), 'Effective Procedures and Computable Functions', Minds and Machines 5, pp. 9–23.Google Scholar
  6. Cleland, C. (2001), 'Recipes, Algorithms, and Programs', Minds and Machines 11, pp. 219–237.Google Scholar
  7. Davis, M. (ed.) (1965), The Undecidable, Hewlett, NY: Raven Press.Google Scholar
  8. Gandy, R. (1978), 'Church's Thesis and principles for mechanisms', in K. J. Barwise, H. J. Keisler, and K. Kunen, eds., The Kleene Symposium, Vol. 101 of Studies in Logic and Foundations of Mathematics, New York: North-Holland, pp. 123–148.Google Scholar
  9. Gandy, R. (1988), 'The Confluence of Ideas in 1936', in R. Herken, ed., The Universal Turing Machine: A Half-Century Survey, Oxford: Oxford University Press, pp. 55–111.Google Scholar
  10. Godel, K. (1931), 'On Formally Undecidable Propositions of Principia Mathematica and Related Systems', in Van Heijenoort (1967), pp. 596–616.Google Scholar
  11. Godel, K. (1958), 'Uber eine bisher noch nicht benutze Erweiterung des finites Standpunktes', Dialectica 12, pp. 280–287. Also published in Volmune II of Kurt Godel: Collected Works, Oxford University Press, 1990, S. Feferman et al., eds., pp. 240–251, with commentary by A. S. Troelstra,pp. 217–241. A later version of an authorized translation (1972), On an extemsion of finitary mathematics which has not yet been used, is reproduced in pp. 271–280.Google Scholar
  12. et al., eds., pp. 369–371.Google Scholar
  13. Godel, K. (1990a), 'Remarks Before the Princeton Bicentenial Conference on Problems in Mathematics', in S. Feferman, J. J. W. Dawson, S. C. Kleene, C. H. Moore, R. M. Solovay, and J. van Heijenoort, eds., Kurt Godel: Collected Works, Vol. II, New York: Oxford University Press, pp. 150–153. With introductory material by Charles Parsons, pp. 144–150.Google Scholar
  14. Godel, K. (1990b), 'Some Remarks on the Undecidability Results', in S. Feferman, J. J.W. Dawson, S. C. Kleene, G. H. Moore, R. lvi. Solovay, and J. van Heijenoort, eds., Kurt Godel: Collected Works, Vol. II, New York: Oxford University Press. With introductory material by Judson Webb.Google Scholar
  15. Godel, K. (1995), 'Some Basic Theorems on the Foundations of Mathematics and Their Implications', in S. Feferman, J. J. W. Dawson, W. Goldfarb, C. Parsons, and R. N. Solovay, eds., Kurt Godel: Collected Works, Vol. III, New York: Oxford University Press, pp. 304–323. With introductory material by C. Boolos, pp. 290–304.Google Scholar
  16. Hilbert, D. (1904), 'On the Foundations of Logic and Arithmetic', in Van Heijenoort (1967), pp. 129–138.Google Scholar
  17. Hilbert, D. (1927), 'The Foundations of Mathematics', in van Heijenoort (1967), pp. 464–479.Google Scholar
  18. Minsky, M. (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  19. Penrose, R. (1989), The Emperor's New Mind, London: Oxford University Press.Google Scholar
  20. Rogers, H. (1967), Theory of Recursive Functions and Effective Computability, Series in Higher Mathematics, New York: McGraw-Hill.Google Scholar
  21. Scott, D. (1967), 'Some Definitional Suggestions for Automata Theory', Journal of Computer and System Sciences 1, pp. 187–212.Google Scholar
  22. Sieg, W. (1994), 'Mechanical Procedures and Mathematical Experience', in A. George, ed., Mathematics and Mind, Oxford: Oxford University Press.Google Scholar
  23. Turing, A. (1936), 'On Computable Numbers With an Application to the Entscheidungsproblem', Proc. London Math. Soc. 42, pp. 230–265. Corrections ibid. 43 (1937), pp. 544–546. Also published in Davis (1965), pp. 155–222.Google Scholar
  24. Turing, A. (1986), 'Report on the Automatic Computing Engine', in B. Carpenter and R. W. Doran, eds., A.M. Turing's ACE Report of 1946 and Other Paper's, Cambridge: Cambridge University Press, pp. 106–124.Google Scholar
  25. van Heijenoort, J., ed. (1967), From Frege to Godel: A Sourcebook in Mathematical Logic, 1879– 1931, Cambridge MA: Harvard University Press.Google Scholar
  26. Wang, H. (1974), From Mathematics to Philosophy, International Library of Philosophy and Scientific Method, New York: Humanities Press. See especially pp. 324–326 and notes there to.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David Israel
    • 1
  1. 1.Artificial Intelligence CenterSRI InternationalMenlo ParkUSA

Personalised recommendations