Surveys in Geophysics

, Volume 22, Issue 5–6, pp 491–507 | Cite as

Contributions of Satellite Laser Ranging to Past and Future Radar Altimetry Missions

  • P. Exertier
  • P. Bonnefond
  • J. Nicolas
  • F. Barlier
Article

Abstract

Satellite laser ranging (SLR) has proven avery efficient method for contributingto the tracking of altimetric satellites anddetermining accurately their orbitalthough hampered by the non-worldwide coverageand the meteorologicalconditions. Indeed, in some cases it is the onlymethod available to determinethe satellite orbit (e.g., the orbits of the ERS-1and Geosat-Follow-On missions).Moreover, any operational and non-weather dependenttechniques, like GPS,DORIS, PRARE, can exhibit systematic errors inpositioning and orbitography. Acomparison with SLR results allows to evidence sucherrors and vice versa. Fordoing that, two different approaches for determiningprecise orbits can beconsidered: one based on global orbit determination,the other on a short-arctechnique used to locally improve a global orbitdetermined by another trackingtechniques, such as DORIS or GPS. We can thusvalidate a global orbit andachieve orbit quality control to a level of2 to 3 centimeters at present and expectto achieve a level of 1 to 2 centimeters inthe near future. Errors induced bystation coordinates or by the gravity field(geographically correlated errors, forexample) can be estimated from SLR tracking data.Colocation experiments withdifferent techniques in the same geodetic siteplay also a key role to ensure preciserelationships between the geodetic referenceframes linked to each technique. Inparticular, the role of the SLR technique is tostrengthen the vertical component(including velocity) of the positioning, whichis crucial for altimetry missions.

The role of SLR data in the modelling of the firstterms of the gravity field has finally to be emphasized,which is of primary importance in orbitography,whatever the tracking technique used.Another application of SLR technology is thesatellite altimeter calibration. Examples of past calibrationand future experiments are given, including theaccuracy we can expect from the Jason-1 and EnviSatspace oceanography missions.

altimetry artificial satellites calibration laser ranging oceanography precise orbit determination reference frames sea level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P.H., Aksnes, K., and Skonnord, H.: 1998, Precise ERS-2 orbit determination using SLR, PRARE, and RA observations, J. Geodesy. 72, 421–429.Google Scholar
  2. Barotto, B. and Berthias, J.P.: 1996, First results of reduced dynamics with DORIS on TOPEX/Poseidon and SPOT, J. Guidance and Dynamics 19-6, 1296–1302.Google Scholar
  3. Bertiger, W.I. et al.: 1994, GPS precise tracking of TOPEX/Poseidon: Results and implications, J. Geophys. Res. 99(C12), 24449–24464.Google Scholar
  4. Bonnefond, P., Exertier, P., Schaeffer, P., Bruinsma, S., and Barlier, F.: 1995, Satellite altimetry from a short-arc orbit technique: Application to the Mediterranean, J. Geophys. Res. 100(C12), 25365–25382.Google Scholar
  5. Bonnefond, P., Exertier, P., Ménard, Y., Jeansou, E., Manzella, G., Sparnocchia, S., and Barlier, F.: 1997, Calibration of radar altimeters and validation of orbit determination in the Corsica-Capraia area, in Proceedings of the 3rd ERS Symposium, Vol. 3, Florence, Italy; pp. 1525–1528.Google Scholar
  6. Bonnefond, P., Exertier, P., and Barlier, F.: 1999, Geographically correlated errors observed from a laser-based short-arc technique, J. Geophys. Res. 104(C7), 15885–15893.Google Scholar
  7. Born, G.H., Parke, M.E., Axelrad, P., Gold, K.L., Johnson, J., Key, K.W., and Kubitschek, D.G.: 1994, Calibration of the TOPEX altimeter using a GPS buoy, J. Geophys. Res. 99(C12), 24517–24526.Google Scholar
  8. Boucher, C., Altamimi, Z., and Sillard, P.: 1999, The ITRF97, in IERS Technical Note, 27, Central Bureau of IERS, Observatoire de Paris, France, May 1999.Google Scholar
  9. Cazenave, A., Gegout, P., Ferhat, G., and Biancale, R.: 1996, Temporal variations of the gravity field from LAGEOS 1 and LAGEOS 2 observations, in Global Gravity Field and its Temporal Variations, Proceedings of IAG Symp. G3, Vol. 116, Springer-Verlag, New York, pp. 141–151.Google Scholar
  10. Cazenave, A., Dominh, K., Soudarin, L., Ponchaud, F., and Le Provost, Ch.: 1999a, Sea level changes from TOPEX/Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS, Geophys. Res. Lett. 26(14), 2077–2080.Google Scholar
  11. Cazenave, A., Mercier, F., Bouillé, F., and Lemoine, J.M.: 1999b, Global-scale interactions between the solid earth and its fluid envelopes at the seasonal timle scale, Earth Planet. Sci. Lett. 171, 549–559.Google Scholar
  12. Chambers, D.P., Ries, J.C. Shum, C.K., and Tapley, B.D.: 1998, On the use of tide gauges to determine altimeter drift, J. Geophys. Res. 103(C6), 12885–12890.Google Scholar
  13. Cheney, R.E.: 1995, TOPEX/Poseidon scientific results – Preface, J. Geophys. Res. 100(C12), 24893.Google Scholar
  14. Cheng, M.K., Shum C.K., and Tapley, B.D.: 1997, Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations, J. Geophys. Res. 102(B10), 22377–22390.Google Scholar
  15. Christensen, E.J. et al.: 1994, Calibration of TOPEX/Poseidon at Platform Harvest, J. Geophys. Res. 99(C12), 24265–24485.Google Scholar
  16. Crétaux, J.F., Nouel, F., Valorge, C., and Janière, P.: 1994, Introduction of empirical parameters deduced from Hill's equations for satellite orbit determination, Manus. Geodaetica 19, 135–156.Google Scholar
  17. Degnan, J.J.: 1993, Millimeter accuracy satellite laser ranging: A review, in contributions of space geodesy to geodynamics: Technology, Geodyn. Ser. 25, 133–162.Google Scholar
  18. Degnan, J.J.: 1997, Satellite laser ranging: Scientific and technological challenges for the new millenium, in Proceedings of SPIE Symposium on Laser Radar Ranging and Atmospheric Lidar Techniques, Vol. 3218, London, UK, Europto Ser., pp. 80–91.Google Scholar
  19. Dunn, P., Torrence, M., Kolenkiewicz, R., and Smith, D.: 1999, Earth scale defined by modern satellite ranging observations, Geophys. Res. Lett. 26(10), 1489–1492.Google Scholar
  20. Eanes, R.J., Kar, S., Bettadpur, S.V., and Watkins, M.M.: 1997, Low-frequency geocenter motion determined from SLR tracking, AGU Fall Meeting, San Francisco, CA.Google Scholar
  21. Exertier, P.: 1993, Geopotential from space techniques, Celest. Mechanics 57, 137–153.Google Scholar
  22. Exertier, P. and Bonnefond, P.: 1997, Analytical solution of perturbed circular motion: Application to satellite geodesy, J. Geodesy 71, 149–159.Google Scholar
  23. Exertier, P., Bruinsma, S., Métris, G., Boudon Y., and Barlier, F.: 1999, Geodynamics from the analysis of the mean orbital motion of geodetic satellites, in Schwartz (ed.), IAG Symposia – Geodesy beyond 2000 – The challenges of the first decade, Vol. 121, Springer, pp. 262–270.Google Scholar
  24. Francis, C.R.: 1992, The height calibration of the ERS-1 radar altimeter, in Proceedings of the first ERS-1 Symposium – Space at the Service of our Environment, ESA Spec. Pub., ESA SP-359(1), pp. 381–393.Google Scholar
  25. Haines, B. and Ménard, Y.: 2000, CAL/VAL Jason-1, AVISO Newsletter, CNES Ed., 7, pp. 24–27.Google Scholar
  26. ILRS: 1999, Report of the Third General Assembly of the International Laser Ranging Service (ILRS), Florence, Italy, Sept. 20Google Scholar
  27. Kirchner, G. and Koidl, F.: 1996, Automatic SPAD time walk compensation, in Y. Fumin and C. Wanzhen (ed.), Proceedings of the 10th Workshop on Laser Ranging Instrum., Shanghai, China, pp. 293-296Google Scholar
  28. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., and Olson, T.R.: 1998, The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP–1998-206861, GSFC, Greenbelt, Maryland, July 1998.Google Scholar
  29. Marshall, J.A., Zelensky, N.P., Klosko, S.M., Chinn, D.S., Luthcke, S.B., Rachlin, K.E., and Williamson, R.G.: 1995, The temporal characteristics of TOPEX/Poseidon radial orbit error, J. Geophys. Res. 100(C12), 253331–25352.Google Scholar
  30. Ménard, Y., et al.: 1994, Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: Additional results at Harvest, J. Geophys. Res. 99(C12), 24487–24504.Google Scholar
  31. Mitchum, G.T.: 1994, Comparison of TOPEX sea surface heights and tide gauge sea levels, J. Geophys. Res. 99(C12), 24541–24553.Google Scholar
  32. Nerem, R.S. et al.: 1994, Gravity model development for TOPEX/Poseidon: Joint Gravity Models 1 and 2, J. Geophys. Res. 99(C12), 24421–24447.Google Scholar
  33. Nicolas, J., Pierron, F., Samain, E., Kasser, M., Barlier, F., and Haase, J.: 2000a, Centimeter accuracy for the French transportable laser ranging station (FTLRS) through sub-system controls, in Proceeding of the EGS general assembly – Session G02: Technology, laser, Nice, France, this issue.Google Scholar
  34. Nicolas, J., Pierron, F., Kasser, M., Exertier, P., Bonnefond, P., Barlier, F., and Haase, J.: 2000b, French transportable laser ranging station: Scientific objectives, technical features, and performance, Applied Optics 39(3), 402–410.Google Scholar
  35. Nicolas, J., Exertier, P., Bonnefond, P., Pierron, F., Boudon, Y., Mangin, J.F., Barlier, F., Kasser, M., and Haase, J.: 1999, Stability control of range biases on the French laser ranging stations, in Proceeding of the EOS/SPIE Symposium on Remote Sensing, Vol. 3865, Florence, Italy, Europto Ser., pp. 27–32.Google Scholar
  36. Nicolas, J., Exertier, P., Bonnefond, P., Pierron, F., and Haase, J.: 1998, First results with the French transportable laser ranging station, in Proceeding of the 11th International Laser Ranging Workshop on Laser Instrumentation, Vol. 1, Deggendorf, Germany, pp. 113–120.Google Scholar
  37. Nouël, F., Berthias, J.P., Delouze, M., Guitart, A., Laudet, P., Piuzzi, A., Pralines, D., Valorge, C., Dejoie, C., Susini, M.F., and Taburiau, D.: 1994, Precise Centre National d'Etudes Spatiales orbits for TOPEX/Poseidon: Is reaching 2 cm still a Challenge?, J. Geophys. Res. 99(C12), 24405–24419.Google Scholar
  38. Biancale, R., Balmino, G., Lemoine, J.M., Marty, J.C., Moynot, B., Barlier, F., Exertier, P., Laurain, O., Gegout, P., Schwintzer, P., Reigber, Ch., Bode, A., Koenig, R., Massmann, F.-H., Raimondo, J.C., Schmidt, R., and Zhu, S.Y.: 2000, A new global Earth gravity field model from satellite orbit perturbations: GRIM5-S1, Geophys. Res. Lett. 27(22), 3611–3636.Google Scholar
  39. Samain, E. et al.: 1998, Millimetric lunar ranging at OCA, Astron. Astrophys. Suppl. Series 130, 235–244.Google Scholar
  40. Scharroo, R. and Visser, P.: 1998, Precise orbit determination and gravity field improvment for the ERS satellites, J. Geophys. Res. 103(C4), 8113–8127.Google Scholar
  41. Scharroo, R. et al.: 1992, ERS-1 precise orbit determination, in Proceeding of the First ERS-1 Symposium – Space at the Service of our Environment, ESA Spec. Pub., ESA SP-359(1), pp. 477–482.Google Scholar
  42. Schwartz, J.A.: 1990, Laser ranging error budget for the TOPEX/POSEIDON satellite, Applied Opt. 29(25), 3590–3596.Google Scholar
  43. Schwintzer, P., et al.: 1997, Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4, J. Geodesy. 71, 189–208.Google Scholar
  44. Sillard, P., Altamimi, Z., and Boucher, C.: 1998, The ITRF96 realization and its associated velocity field, Geophys. Res. Lett. 25(17), 3223–3226.Google Scholar
  45. Tapley, B.D., Watkins, M.M., Ries, J.C., Davis, G.W., Eanes, R.J., Poole, S.R., Rim, H.J., Schutz, B.E., and Shum, C.K.: 1996, The joint gravity model 3, J. Geophys. Res. 101(B12), 28029–28049.Google Scholar
  46. Tapley, B.D. et al.: 1994, Precise orbit determination for TOPEX/Poseidon, J. Geophys. Res. 99(C12), 24383–24404.Google Scholar
  47. Tapley, B.D., Schutz, B.E., Eanes, R.J., Ries, J.C., and Watkins, M.M.: 1993, Lageos laser ranging contributions to geodynamics, geodesy, and orbital dynamics, in Contributions of Space Geodesy to Geodynamics: Earth Dynamics, Geodyn. Ser. 24, 147–174.Google Scholar
  48. Wagner, C. and Melchioni, E.: 1989, On using precise laser ranges to provide vertical control for satellite altimetric surfaces, Manus. Geodaetica 14, 305–338.Google Scholar
  49. Yunck, T.P. et al.: 1994, First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon, Geophys. Res. Lett. 21(7), 541–544.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. Exertier
    • 1
  • P. Bonnefond
    • 1
  • J. Nicolas
    • 1
  • F. Barlier
    • 1
  1. 1.Observatoire de la Côte D'Azur, départ. CERGAGrasse

Personalised recommendations