Public Choice

, Volume 112, Issue 1–2, pp 167–184

Borda Count Versus Approval Voting: A Fuzzy Approach

  • José Luis García-Lapresta
  • Miguel Martínez-Panero


In this paper we consider a fuzzy variantof the Borda count taking into accountagents' intensities of preference. Thisfuzzy Borda count is obtained by means ofscore gradation and normalization processesfrom its original pattern. The advantagesof the Borda count hold, and are evenimproved, providing an appropriate schemein collective decision making. In addition,both classic and fuzzy Borda counts arerelated to approval voting, establishing aunified framework from distinct points ofview.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrow, K.J. (1963). Social choice and individual values. 2nd edition. New York: Wiley.Google Scholar
  2. Baigent, N. and Xu, Y. (1991). Independent necessary and sufficient conditions for approval voting. Mathematical Social Sciences 21: 21-29.Google Scholar
  3. Bana e Costa A. and Vansnick J.C. (1997). The MACBETH approach: Basic ideas, software, and an application. In N. Meskens and M. Roubens (Eds.), Advances in decision analysis, 131-157. Dordrecht: Kluwer Academic Publishers.Google Scholar
  4. Basset Jr., G.W. and Perski, J. (1999). Robust voting. Public Choice 99: 299-310.Google Scholar
  5. Bezdek, J.C. and Harris, J.D. (1978). Fuzzy partitions and relations: An axiomatic basis for clustering. Fuzzy Sets and Systems 1: 111-127.Google Scholar
  6. Bezdek, J.C., Spillman, B. and Spillman, R. (1978). A fuzzy relation space for group decision theory. Fuzzy Sets and Systems 1: 255-268.Google Scholar
  7. Biswas, T. (1994). Efficiency and consistency in group decisions. Public Choice 80: 23-34.Google Scholar
  8. Black, D. (1958). The theory of committees and elections. London: Cambridge University Press.Google Scholar
  9. Black, D. (1976). Partial justification of the Borda count. Public Choice 28: 1-15.Google Scholar
  10. Brams, S.J. (1990). Constrained approval voting: A voting system to elect a governing board. New York: New York Economic Research Reports.Google Scholar
  11. Brams, S.J. and Fishburn, P.C. (1978). Approval voting. American Political Science Review 72: 831-847.Google Scholar
  12. Brams, S.J. and Fishburn, P.C. (1983). Approval voting. Boston: Birkhäuser.Google Scholar
  13. Candeal, J.C. and Induráin, E. (1995). Aggregation of preferences from algebraic models on groups. Social Choice and Welfare 12: 165-173.Google Scholar
  14. Candeal, J.C., Induráin, E. and Uriarte, J.R. (1992). Some issues related to the topological aggregation of preferences. Social Choice and Welfare 9: 213-227.Google Scholar
  15. Chichilnisky, G. and Heal, G. (1983). Necessary and sufficient conditions for a resolution of the social choice paradox. Journal of Economic Theory 31: 68-87.Google Scholar
  16. Cook, W.D. and Seiford, L.M. (1982). On the Borda-Kendall consensus method for priority ranking problems. Management Science 28: 621-637.Google Scholar
  17. Copeland, A.H. (1951). A ‘reasonable’ social welfare function. Mimeo. Notes from a seminar on applications of mathematics to the social sciences, University of Michigan.Google Scholar
  18. Dasgupta, M. and Deb, R. (1996). Transitivity and fuzzy preferences. Social Choice and Welfare 13: 305-318.Google Scholar
  19. Debord, B. (1992). An axiomatic characterization of Borda's k-choice function. Social Choice and Welfare 9: 337-343.Google Scholar
  20. Dummett, M. (1998). The Borda count and agenda manipulation. Social Choice and Welfare 15: 289-296.Google Scholar
  21. Fishburn, P.C. (1978). Axioms for approval voting: direct proof. Journal of Economic Theory 19: 180-185. Corrigendum (1988) 45: 212.Google Scholar
  22. García-Lapresta, J.L. and Llamazares, B. (2000). Aggregation of fuzzy preferences: Some rules of the mean. Social Choice and Welfare 17: 673-690.Google Scholar
  23. Hansson, B. and Sahlquist, H. (1976). A proof technique for social choice with variable electorate. Journal of Economic Theory 13: 193-300.Google Scholar
  24. Kemeny, J. (1959). Mathematics without numbers. Daedalus 88: 571-591.Google Scholar
  25. Le Breton, M. and Uriarte, J.R. (1990). On the robustness of the impossibility result in the topological approach to Social Choice. Social Choice and Welfare 7: 131-140.Google Scholar
  26. Lines, M. (1986). Approval voting and strategic analysis: A venetian example. Theory and Decision 20: 155-172.Google Scholar
  27. Ludwin, W.G. (1978). Strategic voting and the Borda method. Public Choice 33: 85-90.Google Scholar
  28. Marchant, T. (1996a). Agrégation de relations valuées par la méthode de Borda en vue d'un rangement. Considérations axiomatiques. Ph.D. Thesis, Université Libre de Bruxelles.Google Scholar
  29. Marchant, T. (1996b). Valued relations aggregation with the Borda method. Journal of Multi-Criteria Decision Analysis 5: 127-132.Google Scholar
  30. Marchant, T. (2000). Does the Borda Rule provide more than a ranking? Social Choice and Welfare 17: 381-391.Google Scholar
  31. McLean, I. (1995). Independence of irrelevant alternatives before Arrow. Mathematical Social Sciences 30: 107-126.Google Scholar
  32. McLean, I. and Urken, A.B. (eds.) (1995). Classics of Social Choice. Ann Arbor: The University of Michigan Press.Google Scholar
  33. Morales, J.I. (1797). Memoria Matemática sobre el Cálculo de la Opinion en las Elecciones. Madrid: Imprenta Real. English version in McLean and Urken (1995: 197-235).Google Scholar
  34. Morales, J.I. (1805). Apéndice á la Memoria Matemática sobre el Cálculo de la Opinion en las Elecciones. Madrid: Imprenta de Sancha.Google Scholar
  35. Mueller, D.C. (1979). Public choice. London: Cambridge University Press.Google Scholar
  36. Nitzan, S. and Rubinstein, A. (1981). A further characterization of Borda ranking method. Public Choice 36: 153-158.Google Scholar
  37. Nurmi, H. (1981). Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets and Systems 6: 249-259.Google Scholar
  38. Quesada, A. (2000). Manipulability, anonimity and merging functions. Social Choice and Welfare 17: 481-506.Google Scholar
  39. Saari, D.G. (1995). Basic geometry of voting. Berlin: Springer-Verlag.Google Scholar
  40. Saari, D.G. and Merlin, V.R. (1996). The Copeland method I: Relationships and the dictionary. Economic Theory 8: 51-76.Google Scholar
  41. Sen, A.K. (1977). Social choice theory: A re-examination. Econometrica 45: 53-89.Google Scholar
  42. Sen. A.K. (1984). Strategy-proofness of a class of Borda rules. Public Choice 43: 251-285.Google Scholar
  43. Sertel, M.R. (1988). Characterizing approval voting. Journal of Economic Theory 45: 207-211.Google Scholar
  44. Straffin Jr., P.D. (1980). Topics in the theory of voting. Boston: Birkhäuser.Google Scholar
  45. Sugden, R. (1981). The political economy of public choice: An introduction to welfare economics. Oxford: Martin Robertson.Google Scholar
  46. Tangian, A.S. (2000). Unlikelihood of Condorcet's paradox in a large society. Social Choice and Welfare 17: 337-365.Google Scholar
  47. Tanguiane, A.S. (1991). Aggregation and representation of preferences. Introduction to mathematical theory of democracy. Berlin: Springer-Verlag.Google Scholar
  48. Tanino, T. (1984). Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems 12: 117-131.Google Scholar
  49. Weber, R.J. (1977). Comparison of voting systems. Cowles Foundation Discussion Paper No. 498. Cowles Foundation, Yale University.Google Scholar
  50. Weber, R.J. (1995). Approval voting. Journal of Economic Perspectives 9: 39-49.Google Scholar
  51. Ylmaz, M.R. (1999). Can we improve upon approval voting? European Journal of Political Economy 15: 89-100.Google Scholar
  52. Young, H.P. (1974). An axiomatization of Borda's rule. Journal of Economic Theory 9: 43-52.Google Scholar
  53. Young, H.P. (1988). Condorcet's theory of voting. American Political Science Review 82: 1231-1244.Google Scholar
  54. Young, H.P. (1995). Optimal voting rules. Journal of Economic Perspectives 9: 51-64.Google Scholar
  55. Zadeh, L.A. (1971). Similarity relations and fuzzy orderings. Information Sciences 22: 203-213.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • José Luis García-Lapresta
    • 1
  • Miguel Martínez-Panero
    • 1
  1. 1.Departamento de Economía AplicadaUniversidad de ValladolidValladolidSpain

Personalised recommendations