Journal of Electroceramics

, Volume 8, Issue 1, pp 49–55 | Cite as

Electrochemical Gas Sensor Materials Studied by Impedance Spectroscopy Part I: Nasicon as a Solid Electrolyte

  • P. Pasierb
  • S. Komornicki
  • R. Gajerski
  • S. Koziński
  • P. Tomczyk
  • M. Rękas


Impedance spectra of the solid electrolyte (Nasicon) were investigated by means of complex impedance in the frequency range 0.1 Hz–1 MHz at temperatures between 298 and 873 K. A plausible equivalent circuit consisting of resistor and constant phase element in series was proposed. Pronounced effect of electrode structure on impedance spectra has been observed. The equivalent circuit for the sample with Pt blocking electrodes in the temperature range 298 K–773 K is composed mostly of the CPE element, representing electrode-material interface (Warburg impedance). On the other hand, the Nasicon sample with porous Pt electrodes may be simulated by the circuit formed from the resistance R and the CPE element in series. At 573 K and above the CPE element is reduced to the simple Debye capacitor. The determined electrical conductivity and activation energy of conductivity are in general agreement with those for bulk of Nasicon reported in the literature.

impedance spectroscopy electrochemical gas sensors solid electrolytes Nasicon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.Y.P. Hong, Mater. Res. Bull, 11, 173 (1976).Google Scholar
  2. 2.
    J.B. Goodenough, H.Y.P. Hong, and J.A. Kafalas, Mater. Res. Bull., 11, 203 (1976).Google Scholar
  3. 3.
    J.J. Auborn and D.W. Johnson Jr., Solid State Ionics, 5, 315(1981).Google Scholar
  4. 4.
    K. Singh, P. Ambekar, and S.S. Bhoga, Solid State Ionics, 122, 191 (1999).Google Scholar
  5. 5.
    Y.C. Zhang, H. Tagawa, S. Asakura, J. Mizusaki, and H. Narita, J. Electrochem. Soc., 144, 4345 (1997).Google Scholar
  6. 6.
    M. Holzinger, J. Maier, and W. Sitte, Solid State Ionics, 94, 217(1997).Google Scholar
  7. 7.
    D.J. Slater, R.V. Kumar, and D.J. Fray, Solid State Ionics, 86–88,1063 (1996).Google Scholar
  8. 8.
    T. Maruyama, Y. Saito, Y. Matsumoto, and Y. Yano, Solid State Ionics, 17, 281 (1985).Google Scholar
  9. 9.
    S-D. Choi, W-Y. Chung, and D-D. Lee, Sensors and Actuators, B 3536, 263 (1996).Google Scholar
  10. 10.
    N. Miura, M. Ono, K. Shimanoe, and N. Yamazoe, Sensors and Actuators, B 49, 101 (1998.Google Scholar
  11. 11.
    Y. Shimizu and K. Maeda, Sensors and Actuators, B 52, 84 (1998).Google Scholar
  12. 12.
    N. Miura, M. Iio, G. Lu, and N. Yamazoe, Sensors and Actuators, B 3536, 124 (1996).Google Scholar
  13. 13.
    P. Pasierb, S.M. Komornicki, R. Gajerski, S. Kozinski, P. Tomczyk, and M. Rekas, J. Electroceramics, 8, 57 (2002).Google Scholar
  14. 14.
    J.R. Macdonald and D.R. Franceschetti, in Impedance Spectroscopy edited by J.R. Macdonald (John Wiley & Sons, New York, 1987), p. 84.Google Scholar
  15. 15.
    F. Krok, W. Bogusz, and W. Jakubowski, Phys. Stat. Sol. (a), 60,K65 (1980).Google Scholar
  16. 16.
    J.R. Dygas, G. Fafilek, and M.W. Breitner, Solid State Ionics, 119, 115 (1999).Google Scholar
  17. 17.
    J.E. Bauerle, J. Phys. Chem. Solids, 30, 2657 (1969).Google Scholar
  18. 18.
    O. Bohnke, S. Ronchetti, and D. Mazza, Solid State Ionics, 122, 127 (1999).Google Scholar
  19. 19.
    U. von Alpen, M.F. Bell, and W. Wichelhaus, Mat. Res. Bull., 14, 1317 (1979).Google Scholar
  20. 20.
    J.P. Boilot, J.P. Salanie, G. Desplanches, and D. Le Potier, Mat. Res. Bull., 14, 1469 (1979).Google Scholar
  21. 21.
    W. Bogusz, Phys. Stat. Sol. (a), 66, K109 (1981).Google Scholar
  22. 22.
    W. Bogusz, F. Krok, and W. Jakubowski, Phys. stat. sol. (a), 66, K113 (1981).Google Scholar
  23. 23.
    A. Ahmad, T.A. Wheat, A.K. Kuriakose, J.D. Canaday, and A.G. McDonald, Solid St. Ionics, 24, 89 (1987).Google Scholar
  24. 24.
    W. Bogusz, F. Krok, and W. Piszczatowski, Solid St. Ionics, 119, 165 (1999).Google Scholar
  25. 25.
    J.R. Dygas, G. Fafilek, and M.W. Breiter, Solid St. Ionics, 119, 115 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • P. Pasierb
    • 1
  • S. Komornicki
    • 1
  • R. Gajerski
    • 1
  • S. Koziński
    • 1
  • P. Tomczyk
    • 2
  • M. Rękas
    • 3
  1. 1.Faculty of Materials Science and CeramicsUniversity of Mining and MetallurgyCracowPoland
  2. 2.Faculty of Fuels and EnergyUniversity of Mining and MetallurgyCracowPoland
  3. 3.School of Materials Science and EngineeringThe University of New South Wales, UNSWSydneyAustralia

Personalised recommendations