Advertisement

Hydrobiologia

, Volume 469, Issue 1–3, pp 165–178 | Cite as

Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater

  • Christian Vogelsang
  • Andreas Schramm
  • Cristian Picioreanu
  • Mark C. M. van Loosdrecht
  • Kjetill Østgaard
Article

Abstract

Nitrifying activated sludge from natural domestic sewage was entrapped in hydrogel beads, which were subsequently enriched for nitrifiers in a continuous stirred tank reactor (CSTR). Fluorescently labelled, 16S rRNA-targeted oligonucleotide probes specific for ammonia and nitrite oxidisers were used in combination with DAPI staining to monitor the selectivity of the enrichment process. The growth of both nitrifying and heterotrophic bacteria was more pronounced in the periphery of the beads, leading to a biofilm-like stratification of the biomass during the enrichment. Quantitatively, the relative number of nitrifiers increased from 20% immediately after immobilisation up to 64% after 30 days, but decreased again due to extensive heterotrophic growth. These changes were accompanied by an increase in nitrifying activity for about 30 days, whereupon it reached a stable level. This selective enrichment was mathematically modelled by applying finite difference techniques to the diffusion-reaction mass balances of all soluble substrates relevant in the nitrification process. To model biomass growth and spreading, balanced by both decay and detachment at the surface of the beads, the differential methods were combined with a descrete cellular automaton approach. The spatially two-dimensional model was used to calculate radial concentration profiles within a gel bead, as well as to estimate the corresponding total activity of the reactor. Qualitatively, this model could simulate all essential aspects observed experimentally. However, more and better population data as well as independent estimates of decay and hydrolysis rates are needed to refine and verify the quantitative model. In conclusion, even in the absence of an external carbon source and with excess ammonium, it was only possible to obtain a moderate enrichment of nitrifying cells compared to heterotrophs. Under long-term cultivation, the biofilm-like structure developed in the outer gel layers led to a vigorous competition between auto- and heterotrophs for space, and thereby, access to oxygen. FISH analysis in combination with mathematical modelling constitute a suitable toolbox for analysing the population dynamics and biocatalytic performance of such an ecosystem based on lithoautotrophic primary production.

nitrification immobilisation whole cell hybridisation multidimensional modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R. I., K. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev. 59: 143–169.Google Scholar
  2. Amann, R., H. Lemmer & M. Wagner, 1998. Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiol. Ecol. 25: 205–215.Google Scholar
  3. Atlas, R. M. & R. Bartha, 1998. Quantitative ecology: numbers, biomass, and activities. In Atlas, R. M. & R. Bartha, Microbial Ecology: Fundamentals and Applications, Benjamin/Cummings Science Publishing, Menlo Park CA: 218–263.Google Scholar
  4. Burlage, R. S., R. M. Atlas, D. Stahl, G. Geesey & G. Sayler (eds), 1998. Techniques in Microbial Ecology. Oxford University Press, New York: 468 pp.Google Scholar
  5. Charaklis, W. G. & K. C. Marshall (eds), 1990. Biofilms. JohnWiley & Sons, New York: 796 pp.Google Scholar
  6. Cloete, T. E. & N. Y. O. Muyima, 1997. Microbial Community Analysis: the Key to Design of Biological Wastewater Treatment Systems. IAWQ Scientific and Technical Report No. 5. University Press, Cambridge: 98 pp.Google Scholar
  7. DrLange, 1992. Handbook of Photometrical Operation Analysis. Dr Bruno Lange GmbH, Berlin: 323 pp.Google Scholar
  8. Emori, H., K. Mikawa, M. Hamaya, T. Yamaguchi, K. Tanaka & T. Takeshima, 1996. Pegasus. Innovative biological nitrogen removal process using entrapped nitrifiers. In Wijffels, R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science Publishers, Amsterdam: 546–555.Google Scholar
  9. Gujer, W., M. Henze, T. Mino & M. van Loosdrecht, 1999. Activated sludge model no. 3. Wat. Sci. Technol. 39: 183–193.Google Scholar
  10. Henze, M., W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel & G. v. R. Marais, 1995. Activated Sludge Model No. 2. IAWQ Scientific and Technical Report No. 3. IAWQ, London: 32 pp.Google Scholar
  11. Henze, M., P. Harremoës, J. la Cour Jansen & E. Arvin, 1997. Wastewater Treatment. Biological and Chemical Processes. Springer-Verlag, Berlin Heidelberg: 383 pp.Google Scholar
  12. Herzberg, S., E. Moen, C. Vogelsang & K. Østgaard, 1995. Mixed photo-crosslinked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl. Microbiol. Biotechnol. 43: 10–17.Google Scholar
  13. Klein, J. & F. Wagner, 1978. Immobilized whole cells. In Behrens, D. & K. Fischbeck (eds), Biotechnology. Proceedings of the First European Congress on Biotechnology, 25–29 September 1978 (Dechema Monographien No. 82). Verlag Chemie, Weinheim: 142–164.Google Scholar
  14. Kyosai, S. & M. Takahashi, 1996. Application of new wastewater treatment technologies developed by the Biofocus WT project. WQI Water Quality International Sept./Oct.: 27–30.Google Scholar
  15. Leenen, E. J. T. M., V. A. P. M. Dos Santos, K. C. F. Grolle, J. Tramper & R. H. Wijffels, 1996. Characteristics of and selection criteria for cell immobilization in wastewater treatment. Wat. Res. 30: 2985–2996.Google Scholar
  16. Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann & D. A. Stahl, 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156–2162.Google Scholar
  17. Murray, R. G. E. & S. W. Watson, 1965. Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter. J. Bacteriol. 89: 1594–1609.Google Scholar
  18. Oerther, D. B., F. L. de los Reyes & L. Raskin, 1999. Interfacing phylogenetic oligonucleotide probe hybridisation with representation of microbial populations and specific growth rates in mathematical models of activated sludge processes. Wat. Sci. Technol. 39: 11–20.Google Scholar
  19. Østgaard, K., N. Lee & T. Welander, 1994. Nitrification at low temperatures. In Second International Symposium on Environmental Biotechnology. Brighton 4–6 July 1994. Institution of Chemical Engineers, Rugby: 134–137.Google Scholar
  20. Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1997. Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Wat. Sci. Technol. 36: 147–156.Google Scholar
  21. Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1998. A new combined differential-discrete cellular automaton approach for biofilm modelling: application for growth in gel beads. Biotechnol. Bioeng. 57: 718–731.Google Scholar
  22. Picioreanu, C., M. C. M. van Loosdrecht & J. J. Heijnen, 1999. Discrete-differential modelling of biofilm structure. Wat. Sci. Technol. 39: 115–122.Google Scholar
  23. Schaechter, M. O., O. Maaloe & N. O. Kjeldgaard, 1958. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19: 592–606.Google Scholar
  24. Schramm, A., D. De Beer, H. van den Heuvel, S. Ottengraf & R. Amann, 1998a. In situ structure/function studies in waste-water treatment systems. Wat. Sci. Technol. 37: 413–416.Google Scholar
  25. Schramm, A., D. De Beer, M. Wagner & R. Amann, 1998b. Identification and activity in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480–3485.Google Scholar
  26. Smidsrød, O. & G. Skjåk–Bræk, 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 3: 71–78.Google Scholar
  27. Stahl, D. A. & R. Amann, 1991. Development and application of nucleic acid probes. In Stackebrandt E. & M. Goodfellow (eds), Sequencing and Hybridization Techniques in Bacterial Systematics. John Wiley & Sons, Chichester: 205–248.Google Scholar
  28. Stahl, D. A., 1997. Molecular approaches for the measurement of density, diversity, and phylogeny. In Hurst, C. J., G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach & M. V. Walter (eds), Manual of Environmental Microbiology. American Society for Microbiology Press, Washington DC: 102–114.Google Scholar
  29. Tanaka, K., T. Sumino, H. Nakamura, T. Ogasawara & H Emori, 1996. Application of nitrification by cells immobilized in polyethylene glycol. In Wijffels R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science B. V., Amsterdam: 622–632.Google Scholar
  30. Vogelsang, C. & K. Østgaard, 1996. Stability of alginate gels applied for cell entrapment in open systems. In Wijffels, R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), Immobilized Cells: Basics and Applications. Elsevier Science B. V., Amsterdam: 213–219.Google Scholar
  31. Vogelsang, C., A. Husby & K. Østgaard, 1997. Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment. Wat. Res. 31: 1659–1664.Google Scholar
  32. Vogelsang, C., K. Gollembiewski & K. Østgaard, 1999. Effect of preservation techniques on the regeneration of gel entrapped nitrifying sludge. Wat. Res. 33: 164–168.Google Scholar
  33. Vogelsang, C., R. H. Wijffels & K. Østgaard, 2000. Rheological properties and mechanical stability of new gel-entrapment systems applied in bioreactors. Biotechnol. Bioeng. 70: 247–253.Google Scholar
  34. Wagner, M., B. Assmus, A. Hartmann, P. Hutzler & R. Amann, 1995. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J. Microsc. 176: 181–187.Google Scholar
  35. Wagner, M., G. Rath, R. Amann, H.-P. Koops & K.-H. Schleifer, 1995. In situ identification of ammonia-oxidizing bacteria. System. Appl. Microbiol. 18: 251–264.Google Scholar
  36. Wagner, M., G. Rath, H.-P. Koops, J. Flood & R. Amann, 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Wat. Sci. Technol. 34: 237–244.Google Scholar
  37. Wagner, M. & R. Amann, 1997. Molecular techniques for determining microbial community structures in activated sludge. In Cloete T. E. & N. Y. O. Muyima (eds), Microbial Community Analysis: The Key to Design of Biological Waste-water Treatment Systems. IAWQ Scientific and Technical Report No. 5, University Press, Cambridge: 61–72.Google Scholar
  38. Watson, S. W., 1971. Reisolation of Nitrosospira briensis S. Winogradsky & H. Winogradsky 1933. Arch.Mikrobiol. 75: 179–188.Google Scholar
  39. Watson, S. W. & M. Mandel, 1971. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J. Bacteriol. 107: 563–569.Google Scholar
  40. Wiesmann, U., 1994. Biological nitrogen removal from wastewater. In Fiechter, A. (ed.), Advances in Biochemical Engineering / Biotechnology. Springer-Verlag, Berlin 51: 113–154.Google Scholar
  41. Wijffels, R. H. & J. Tramper, 1995. Nitrification by immobilized cells. Enzyme Microb. Technol. 17: 482–492.Google Scholar
  42. Wijffels R. H., R. M. Buitelaar, C. Bucke & J. Tramper (eds), 1996. Immobilized Cells: Basics and Applications. Elsevier Science Publishers, Amsterdam: 864 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Christian Vogelsang
    • 1
  • Andreas Schramm
    • 2
  • Cristian Picioreanu
    • 3
  • Mark C. M. van Loosdrecht
    • 3
  • Kjetill Østgaard
    • 1
  1. 1.Department of Biotechnology, NorwegianUniversity of Science and Technology NTNUTrondheimNorway
  2. 2.Department of Ecological Microbiology, BITOEKUniversity of BayreuthBayreuthGermany
  3. 3.Department of Biochemical EngineeringDelft University of Technology, Kluyver Laboratory for BiotechnologyDelftThe Netherlands

Personalised recommendations