Advertisement

Water, Air, and Soil Pollution

, Volume 138, Issue 1–4, pp 165–180 | Cite as

Heavy Metal Toxicity: Effect on Plant Growth and Metal Uptake by Wheat, and on Free Living Azotobacter

  • Rana Athar
  • Masood Ahmad
Article

Abstract

A pot study was conducted to investigate the toxiceffects of certain heavy metals on the plant growth and grainyield of wheat (Triticum aestivum L.). The resultsrevealed that heavy metals brought about significant reductionsin both parameters, Cd being the most toxic metal followed by Cu,Ni, Zn, Pb and Cr. Moreover, the presence of Cd in the soilresulted in the maximum inhibition (84.9%) in the number of freeliving Azotobacter chroococcum cells over the control. Thephytotoxicity was apparently due to the susceptibility of thefree living Azotobacter chroococcum cells to the toxicdoses of heavy metals.Protein content decreased from 19.0–71.4% in metal exposedplants at metal concentrations equivalent to those found inpolluted soil. Metal uptake by grains was directly related tothe applied heavy metal with greater concentrations of metalsfound in cases where metals were added separately rather than incombinations. The toxic effects on the plant growth, nitrogencontent in plant parts, and protein content in grains, exerted bytwo metals in combination were not additive, but rather only assevere as for the most toxic metal alone.

heavy metals heavy metal uptake nitrogenfixation phytotoxicity wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S. K., Agarwal, M. and Grover, A.: 1999, 'Emerging trend in agricultural biotechnology research; use of abiotic stress induced promorter to drive expression of a stress resistance gene in the transgenic system leads to high level stress tolerance associated with minimal negative effects on growth', Curr. Sci. 77, 1577–1579.Google Scholar
  2. Albering, H. J., Van Leusen, S. M., Moonen, E. J., Hoogewerff, J. A. and Kleinjans, J. C.: 1999, 'Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994', Environ. Health Perspect. 107, 37–43.Google Scholar
  3. Babich, H. and Stotzky, G.: 1977a, 'Sensitivity of various bacteria, including actinomycetes and fungi to cadmium and the influence of pH on sensitivity', Appl. Environ. Microbiol. 33, 681–695.Google Scholar
  4. Babich, H. and Stotzky, G.: 1977b, 'Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: Influence of clay minerals and pH', Appl. Environ. Microbiol. 33, 1059–1066.Google Scholar
  5. Babich, H. and Stotzky, G.: 1980, 'Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms', CRC Crit. Rev. Microbiol. 8, 99–145.Google Scholar
  6. Babich, H., Schiffenbauer, M. and Stotzky, G.: 1982, 'Comparative toxicity of trivalent and hexavalent chromium to fungi', Bull. Environ. Contam. Toxicol. 28, 193–202.Google Scholar
  7. Baccouch, S., Chaovi, A. and El Ferjani, E.: 1998, 'Nickel toxicity: effects on growth and metabolism of maize', J. Plant Nutr. 21, 577–588.Google Scholar
  8. Bansal, O.P.: 1998, 'Heavy metal pollution of soils and plants due to sewage irrigation', Indian J. Environ. Health 40, 51–57.Google Scholar
  9. Bewley, R. J. F and Stotzky, G.: 1983, 'Effects of cadmium and zinc on microbial activity in soil; Influence of clay minerals. Part II: Metal added simultaneously', Sci. Tot. Environ. 31, 57–69.Google Scholar
  10. Bitton, G. and Dutka, B. J.: 1986, 'Introducing and Review of Microbial and Toxicity Screening Procedures', in B. J. Dutka and G. Bitton (eds), Toxicity Testing using Microorganisms,Vol. I, CRC Press, Boca Raton, Florida, pp. 1–26.Google Scholar
  11. Bremner, J. M.: 1965, 'Total Nitrogen', in C. A. Black (ed.), Methods of Soil Analysis, American Society of Agronomy Madison, Part 2, pp. 1149–1178.Google Scholar
  12. Brown, M. E.: 1972, 'Plant growth substances produced by microorganisms of soil and rhizosphere', J. Appl. Bacteriol. 35, 443–451.Google Scholar
  13. Brynhildsen, L. and Rosswall, T.: 1997, 'Effects of metals on the microbial mineralization of organic acids', Water, Air, and Soil Pollut. 94, 45–57.Google Scholar
  14. Chaddha, A.: 1990, Agricultural Statistics in India, Commonwealth Publishers, New Delhi, India.Google Scholar
  15. Ciamporova, M. and Mistrik, I.: 1993, 'The ultra-structural response of root cells to stressful conditions', Environ. Exp. Bot. 33, 11–26.Google Scholar
  16. Cieslinski, G., Van Rees, K. C. J., Huang, P. M., Kozak, L. M., Rostad, H. P. W. and Knott, D. R.: 1996, 'Cadmium uptake and bioaccumulation in selected culitvars of durum wheat and flax as affected by soil type', Plant Soil 182, 115–124.Google Scholar
  17. Coppola, S., Dumontet, S., Portonio, M., Basile, G. and Marino P.: 1988, 'Effect of cadmium bearing sewage sludge on crop plants and microorganisms in two different soils', Agric. Ecosyst. Environ. 20, 181–194.Google Scholar
  18. Ghosh, A. B., Bajaj, J. C., Hasan, R. and Singh, D.: 1983, Soil and Water Testing Method, Indian Agricultural Research Institute, New Delhi.Google Scholar
  19. Gupta, S. L.: 1986, 'Copper uptake and inhibition of growth, photosynthetic pigments and macro-molecules in the cyanobacterium Anacystis ridulans', Phytosynthetica 20, 447–452.Google Scholar
  20. Hampp, R., Beulich, K. and Ziegler, H.: 1976, 'Effects of zinc and cadmium on photosynthetic CO2 fixation and hill activity of isolated spinach chloroplasts', Z. Pflanzer Physioal. 77, 336–344.Google Scholar
  21. James, B. R. and Bartlet, R. J.: 1984, 'Plant—soil interactions of chromium', J. Environ. Qual. 13, 67–70.Google Scholar
  22. Jarup, L., Berglund, M., Elinder, C.G., Nordberg, G. and Vahter, M.: 1998, 'Health effects of cadmium exposure — A review of the literature and a risk estimate', Scand. J. Work Environ. Health 24(1), 1–51.Google Scholar
  23. Kalyanaraman, S. B. and Sivagurunathan, P.: 1993, 'Effect of cadmium, copper and zinc on the growth of blackgram', J. Plant Nutr. 16, 2029–2042.Google Scholar
  24. Karataglis, S., Moustakas, M. and Symeonidis, L.: 1991, 'Effect of heavy metals on isoperoxidases of wheat', Biologia Plantarum 33, 3–9.Google Scholar
  25. Letunova, S. V., Umarov, M. M., Niyazova and Melekhin, Y. I.: 1985, 'Nitrogen fixation activity as a possible criterion for determining permissible concentrations of heavy metals in soil', Soviet Soil Science 17, 88–92.Google Scholar
  26. Lolkema, P. C., Donker, M. H., Schouten, A. J. and Ernst, W. H. O.: 1984, 'The possible role of metallothioneins in copper tolerance of Silence Cucubaius', Planta 162, 174–179.Google Scholar
  27. Lorenz, S. E., McGrath, S. P. and Giller, K. E.: 1992, 'Assessment of free living nitrogen fixation activity as a biological indicator of heavy metal toxicity in soil', Soil Biol. Biochem. 24, 601–606.Google Scholar
  28. Maliszewska, W., Dec, S., Wierzbicka, H. and Wozniakowska, A.: 1985, 'The influence of various heavy metal compounds on the development and activity of soil microorganisms', Environ. Pollut. 37, 195–215.Google Scholar
  29. Martensson, A. M. and Torstensson, L.: 1996, 'Monitoring sewage sludge using heterotrophic nitrogen fixing microorganisms', Soil Biol. Biochem. 28, 1621–1630.Google Scholar
  30. Martinez Toledo, M. V., Gonzalez Lopez, J., de la Rubia, T., Mureno, J. and Ramos Cormenzana, A.: 1988, 'Grain yield response of zea mays (hybrid AE 703) to Azotobacter chroococcum H23', Biol. Fertil. Soils 6, 352–353.Google Scholar
  31. Mishustin, E. N. and Shilkinova, V. K.: 1971, Biological Nitrogen Fixation of Atmospheric Nitrogen, Macmillan Press Ltd., London.Google Scholar
  32. Mueller, J. G., Chapman, P. J. and Pritchard, P. H.: 1989, 'Creosote contaminated sites', Environ. Sci. Technol. 23, 1197–1201.Google Scholar
  33. Nriagu, J. O. and Nieboer, E.: 1988, Chromium in the Natural and Human Environment, John Wiley & Sons, New York.Google Scholar
  34. Ouzounidou, G., Ciamporova, M., Moustakas, M. and Karataglis, S.: 1995, 'Responses of Maize (Zea mays L.) plants to copper stress I. Growth, mineral content and ultrastructure of roots', Environ. Exp. Bot. 35, 167–176.Google Scholar
  35. Purves, D.: 1985, Trace Element Contamination of the Environment, Elsevier Science Publisher, Amsterdam, The Netherlands.Google Scholar
  36. Salgare, S. A. and Acharekar, C.: 1992, 'Effect of industrial pollution on growth and content of certain weeds', J. Nature Conserve. 4, 1–6.Google Scholar
  37. Satayakala, G. and Jamil, K.: 1997, 'Studies on the effect of heavy metal pollution on Pistia statiotes statiotes L., (Water lettuce)', Indian. J. Environ. Health 39, 1–7.Google Scholar
  38. Sharma, D. C. and Sharma, C. P.: 1996, 'Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Tritiicum aestivum L. cv. UP 2003', Indian J. Exp. Biol. 34, 689–691.Google Scholar
  39. Skujins, J., Nohrstedt, H. O. and Oden, S.: 1986, 'Development of a sensitive biological method for the determination of a low level toxic contamination in soils', Swed. J. Agric. Res. 16, 113–118.Google Scholar
  40. Smilde, K. W.: 1981, 'Heavy metal accumulation in crops grown on sewage sludge amended with heavy metals', Plant Soil 62, 3–14.Google Scholar
  41. Smith, S. R., Sweet, N. R., Davies, G. K. and Hallett, J. E.: 1992, 'Uptake of chromium and mercury by crops. Sites with a long history of sludge disposal (phase II EHA 9019)', Final Report to the Department of Environment, WRC Medminham, Marlow, pp. 53–73.Google Scholar
  42. Sterritt, R. M. and Lester, J. N.: 1980, 'Interactions of heavy metals with bacteria', Sci. Tot. Environ. 14, 5–17.Google Scholar
  43. Subbiah, B. V. and Asija, G. L.: 1956, 'A rapid procedure for the determination of available nitrogen', Curr. Sci. 25, 259–260.Google Scholar
  44. Timonin, M. I.: 1940, 'The interaction of higher plants and soil microorganisms I. Microbial population of rhizosphere of seedlings of certain cultivated plants', Can. J. Res. 18, 307–317.Google Scholar
  45. Van Assche, F. and Clijsters, H.: 1990, 'Effects of metals on enzyme activity in plants', Plant Cell Environ. 13, 195–206.Google Scholar
  46. Verkleij, J. A. C. and Prast, J. E.: 1989, 'Cadmium tolerance and co-tolerance in Silene vulagris (Moench.) Gracke [= S. Cucubalus (L) Wibs.]', New Phytol. 111, 637–645.Google Scholar
  47. Vincent, J. M.: 1970, A Manual for the Practical Study of the Root Nodule Bacteria, International Biological Programme Handbook, No. 15, Blackwell Scientific Publications, Oxford.Google Scholar
  48. Wagner, G.J.: 1993, 'Accumulation of cadmium in crop plants and its consequences to human health', Adv. Agron. 51, 173–212.Google Scholar
  49. Wilcke, W., Mosbach, J., Kobza, J. and Zech, W.: 1998, 'Distribution of Al and heavy metals in bulk soil and aggregates at three sites contaminated by the emissions of a central Slovak Al smelter', Water, Air, and Soil Pollut. 106, 389–402.Google Scholar
  50. Woolhouse, H. M.: 1983, 'Toxicity and Tolerance in the Responses of Plants to Metals', in O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (eds), Encyclopaedia of Plant Physiology, Springer Verlag, Berlin, pp. 245–262.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rana Athar
    • 1
  • Masood Ahmad
    • 2
  1. 1.Institute of AgricultureAligarh Muslim UniversityAligarh (U.P.)India
  2. 2.Department of Biochemistry, Faculty of Life SciencesAligarh Muslim UniversityAligarh (U.P.)India

Personalised recommendations