Biochemistry (Moscow)

, Volume 67, Issue 5, pp 525–533 | Cite as

Kinetics of Thermal Aggregation of Tobacco Mosaic Virus Coat Protein



The kinetics of thermal aggregation of coat protein (CP) of tobacco mosaic virus (TMV) have been studied at 42 and 52°C in a wide range of protein concentrations, [P]0. The kinetics of aggregation were followed by monitoring the increase in the apparent absorbance (A) at 320 nm. At 52°C the kinetic curves may be approximated by the exponential law in the range of TMV CP concentrations from 0.02 to 0.30 mg/ml, the first order rate constant being linearly proportional to [P]0 (50 mM phosphate buffer, pH 8.0). The analogous picture was observed at 42°C in the range of TMV CP concentrations from 0.01 to 0.04 mg/ml (100 mM phosphate buffer, pH 8.0). At higher TMV CP concentrations the time of half-conversion approaches a limiting value with increasing [P]0 and at sufficiently high protein concentrations the kinetic curves fall on a common curve in the coordinates {A/Alim; t} (t is time and Alim is the limiting value of A at t → ∞). According to a mechanism of aggregation of TMV CP proposed by the authors at rather low protein concentrations the rate of aggregation is limited by the stage of growth of aggregate, which proceeds as a reaction of the pseudo-first order, whereas at rather high protein concentrations the rate-limiting stage is the stage of protein molecule unfolding.

tobacco mosaic virus coat protein thermal aggregation kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler, P. J. G. (1986) J. Gen. Virol., 65, 253–279.Google Scholar
  2. 2.
    Orlov, V. N., Arutyunyan, A. M., Kust, S. V., Litmanovich, E. A., Drachev, V. A., and Dobrov, E. N. (2001) Biochemistry (Moscow), 66, 154–162.Google Scholar
  3. 3.
    Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 492–507.Google Scholar
  4. 4.
    Dobrov, E. N., Abu-Eid, M. M., Solovyev, A. G., Kust, S. V., and Novikov, V. K. (1997) J. Protein Chem., 16, 27–36.Google Scholar
  5. 5.
    Fraenkel-Conrat, H. (1957) Virology, 1, 1–4.Google Scholar
  6. 6.
    Dobrov, E. N., Kust, S. V., Yakovleva, O. A., and Tikhonenko, T. I. (1977) Biochim. Biophys. Acta, 475, 623–637.Google Scholar
  7. 7.
    Eronina, T. B., Chebotareva, N. A., Livanova, N. B., and Kurganov, B. I. (2001) Biochemistry (Moscow), 66, 449–455.Google Scholar
  8. 8.
    Kurganov, B. I., Lyubarev, A. E., Sanchez-Ruiz, J. M., and Shnyrov, V. L. (1997) Biophys. Chem., 69, 125–135.Google Scholar
  9. 9.
    Lyubarev, A. E., and Kurganov, B. I. (2000) J. Thermal Analysis Calorimetry, 62, 51–62.Google Scholar
  10. 10.
    Lyubarev, A. E., and Kurganov, B. I. (2000) Uspekhi Biol. Khim., 40, 43–84.Google Scholar
  11. 11.
    Sanchez-Ruiz, J. M., Lopéz-Lacomba, J. L., Cortijo, M., and Mateo, P. L. (1988) Biochemistry, 27, 1648–1652.Google Scholar
  12. 12.
    Zettlmeissl, G., Rudolph, R., and Jaenicke, R. (1979) Biochemistry, 18, 5567–5571.Google Scholar
  13. 13.
    Martineau, P., and Betton, J.-M. (1999) J. Mol. Biol., 292, 921–929.Google Scholar
  14. 14.
    Kiefhaber, T., Rudolph, R., Kohler, H.-H., and Buchner, J. (1991) Bio/Technology, 9, 825–829.Google Scholar
  15. 15.
    Oosawa, F., and Kasai, M. (1962) J. Mol. Biol., 4, 10–21.Google Scholar
  16. 16.
    Inouye, H., and Kirschner, D. A. (2000) J. Struct. Biol., 130, 123–129.Google Scholar
  17. 17.
    Roher, N., Miré, F., Boldyreff, B., Llorens, F., Plana, M., Issinger, O._G., and Itarte, E. (2001) Eur. J. Biochem., 268, 429–436.Google Scholar
  18. 18.
    Kurganov, B. I. (1998) Biochemistry (Moscow), 63, 364–366.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • B. I. Kurganov
    • 1
  • E. R. Rafikova
    • 2
  • E. N. Dobrov
    • 2
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations