International Journal of Primatology

, Volume 23, Issue 4, pp 785–819 | Cite as

Modelling Primate Behavioral Ecology

  • R. I. M. Dunbar

Abstract

Models play an important role in any mature science because they force us to make explicit our assumptions about how a phenomenon works and allow us to explore the way in which different variables influence a complex biological system. I review the principal kinds of models that could be used to study primate behavior and ecology: linear programming models, systems models, optimality models, stochastic dynamic programming models and agent-based simulation models. Although less use has been made of modelling in primatology than in some other areas of behavioral ecology, there is considerable scope for exploiting the predictive and explanatory power of models in the field.

models evolution behavioral ecology primates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Altmann, J. (1980). Baboon Mothers and Infants, Harvard University Press, Cambridge, MA.Google Scholar
  2. Altmann, S. A. (1998). Foraging for Survival, University of Chicago Press, Chicago.Google Scholar
  3. Barrett, L. (1995). Foraging Strategies, Ranging Behaviour and ‘Territoriality’ Among Grey-Cheeked Mangabeys in Kibale Forest, Uganda, PhD Thesis, University of London.Google Scholar
  4. Barrett, L., and Henzi, S. P. (2001). The utility of grooming in baboon troops. In Economics in Nature, Cambridge University Press, Cambridge, pp. 119–145.Google Scholar
  5. Barrett, L., Henzi, S. P., Weingrill, T., Lycett, J. E., and Hill, R. A. (1999). Market forces predict grooming reciprocity in female baboons. Proc. R. Soc. Lond. B 266: 665–670.Google Scholar
  6. Barrett, L., Henzi, S. P., Weingrill, T., Lycett, J. E., and Hill, R. A. (2000). Female baboons do not raise the stakes, but they give as good as they get. Anim. Behav. 59: 763–770.Google Scholar
  7. Barrett, L., and Lowen, C. B. (1998). Random walks and the gas model: Spacing behaviour of grey-cheeked mangabeys. Funct. Ecol. 12: 857–865.Google Scholar
  8. Belovsky, G. E. (1978). Diet optimisation in a generalist herbivore: The moose. Theoret. Pop.Biol. 14: 105–134.Google Scholar
  9. Belovsky, G.E. (1987). Hunter-gatherer foraging:Alinear programming approach. J. Anthopol.Archaeol. 6: 29–76.Google Scholar
  10. Chapman, M., and Hausfater, G. (1979). The reproductive consequences of infanticide in langurs: A mathematical model. Behav. Ecol. Sociobiol. 5: 227–240.Google Scholar
  11. Cohen, J. E. (1971). Casual Groups of Monkeys, Apes and Men, Harvard University Press, Cambridge, MA.Google Scholar
  12. Cohen, J. E. (1972). Aping monkeys with mathematics. In Tuttle, R. (ed.), Functional and Evolutionary Biology of the Primates, Aldine-Atherton, Chicago, pp. 415–436.Google Scholar
  13. Cohen, J. E. (1975). The size and demographic composition of social groups of wild orang utans.Anim. Behav. 23: 543–551.Google Scholar
  14. Cowlishaw, G. (1997a). Refuge use and predation risk in a desert baboon population. Anim.Behav. 54: 241–253.Google Scholar
  15. Cowlishaw, G. (1997b). Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. Anim. Behav. 54: 667–686.Google Scholar
  16. Cowlishaw, G., and Dunbar, R. I. M. (2000). Primate Conservation Biology, University of Chicago Press, Chicago.Google Scholar
  17. Digby, L. J. (1999). Sexual behavior and extragroup copulations in a wild population of common marmosets (Callithrix jacchus). Folia Primatol. 70: 136–145.Google Scholar
  18. Dunbar, R. I. M. (1984). Reproductive Decisions: An Economic Analysis of Gelada Baboon Social Strategies, Princeton University Press, Princeton, NJ.Google Scholar
  19. Dunbar, R. I. M. (1992a). A model of the gelada socioecological system. Primates 33: 69–83.Google Scholar
  20. Dunbar, R. I. M. (1992b). Time: A hidden constraint on the behavioural ecology of baboons.Behav. Ecol. Sociobiol. 31: 35–49.Google Scholar
  21. Dunbar, R. I. M. (1992c). Neocortex size as a constraint on group size in primates. J. Hum.Evol. 22: 469–493.Google Scholar
  22. Dunbar, R. I. M. (1993). Sozioökoloische Einflüsse auf das Gruppenleben von Primaten. In Voland, E. (ed.), Evolution und Anpassung, Stuttgart, Hirzel Verlag, pp. 75–93.Google Scholar
  23. Dunbar, R. I. M. (1994). Ecological constraints on group size in baboons. In Jarman, P., and Rossiter, A. (eds.), Animal Societies: Individuals, Interactions and Social Organisation, Kyoto University Press, Kyoto.Google Scholar
  24. Dunbar, R. I. M. (1995a). The Trouble With Science, Faber & Faber, London.Google Scholar
  25. Dunbar, R. I. M. (1995b). The mating system of Callitrichid primates: I. Conditions for the coevolution of pair bonding and twinning. Anim. Behav. 50: 1057–1070.Google Scholar
  26. Dunbar, R. I.M. (1995c). The mating system of Callitrichid primates: II. The impact of helpers.Anim. Behav. 50: 1071–1089.Google Scholar
  27. Dunbar, R. I.M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: A modelling approach. Glob. Change Biol. 4: 293–304.Google Scholar
  28. Dunbar, R. I. M. (2000). Male mating strategies: A modelling approach. In Kappeler, P. (ed.), Primate Males, Cambridge University Press, Cambridge, pp. 259–268.Google Scholar
  29. Dunbar, R. I. M., and Dunbar, P. (1988). Maternal time budgets of gelada baboons. Anim.Behav. 36: 970–980.Google Scholar
  30. Fa, J. E., and Lind, R. (1996). Population management and viability of the Gibraltar Babrary macaques. In Fa, J. E., and Lindburg, D. G. (eds.), Evolution and Ecology of Macaque Societies, Cambridge University Press, Cambridge, pp. 235–262.Google Scholar
  31. Ham, R. M. (1994). Behaviour and Ecology of Grey-Cheeked Mangabeys (Cercocebus albigena) in the Lope Reserve, Gabon, PhD Thesis, University of Stirling.Google Scholar
  32. Hanski, I. (1999). Metapopulation Ecology, Oxford University Press, Oxford.Google Scholar
  33. Harcourt, A. H., and Greenberg, J. (2001). Do gorilla females join males to avoid infanticide? A quantitative model. Anim. Behav. 62: 905–915.Google Scholar
  34. Hausfater, G. (1981). Infanticide in langurs: Strategies, counterstrategies and parameter values.In Hausfater, G., and Hrdy, S. B. (eds.), Infanticide, pp. 257–282.Google Scholar
  35. Hemelrijk, C. K. (1996). Reciprocation in apes: From complex cognition to self-structuring. In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies, Cambridge University Press, Cambridge, pp. 185–193.Google Scholar
  36. Hemelrijk, C. K. (1999). An individual-oriented model on the emergence of despotic and egalitarian societies. Proc. R. Soc. Lond. B 266: 361–369.Google Scholar
  37. Hemelrijk, C. K. (2000). Towards an integration of social dominance and spatial structure.Anim. Behav. 59: 1035–1048.Google Scholar
  38. Henzi, S. P., Lycett, J. E., and Piper, S. E. (1997). Fission and troop size in a mountain baboon population. Anim. Behav. 53: 525–535.Google Scholar
  39. Hill, C. M. (1991). A Study of Territoriality in Cercopithecus diana: Do Females Take an Active Part in Territorial Defence?, PhD Thesis, University of London.Google Scholar
  40. Hogeweg, P., and Hesper, B. (1983). The ontogeny of interaction structure in bumble bee colonies: A MIRROR model. Behav. Ecol. Sociobiol. 12: 271–283.Google Scholar
  41. Houston, A. I., Clarke, C. W., and McNamara, J. M. (1988). Dynamic models in behavioural and evolutionary ecology. Nature (London) 332: 29–34.Google Scholar
  42. Janson, C. (in press). Puzzles, predation and primates: Using life history to understand selection pressures. In Perreira, M., and Kapeller, P. (eds.), Primate Life Histories and Socioecology, University of Chicago Press, Chicago, pp. 000- 000.Google Scholar
  43. Key, C. A., and Aiello, L. C. (2000). A prisoner's dilemma model of the evolution of paternal care. Folia Primatol. 71: 77–92.Google Scholar
  44. Kinnaird, M. F., and O'Brien, T. G. (1991). Viable populations for an endangered forest primate, the Tana River crested mangabey (Cercebus galeritus galeritus). Cons. Biol. 5: 203–213.Google Scholar
  45. Kuchikura, Y. (1988). Efficiency and focus of blowpipe hunting among Semaq Beri huntergatherers of peninsular Malaysia. Hum. Ecol. 16: 271–305.Google Scholar
  46. Lan, D., Dunbar, R. I. M., and Cowlishaw, G. (submitted). Amodel of the gibbon socioecological system. Behav. Ecol. Sociobiol. Google Scholar
  47. Lima, S. L. (1987). Vigilance while feeding and its relation to the risk of predation. J. theoret.Biol. 124: 303–316.Google Scholar
  48. Lowen, C. B., and Dunbar, R. I.M. (1994). Territory size and defendability in primates. Behav.Ecol. Sociobiol. 35: 347–354.Google Scholar
  49. Mace, R. (1993). Nomadic pastoralists adopt strategies that maximise long-term household survival. Behav. Ecol. Sociobiol. 33: 329–334.Google Scholar
  50. Mace, R. (1996).When to have another baby. Ethol. Sociobiol. 17: 263–273.Google Scholar
  51. Mangel, M., and Clark, C. W. (1988). Dynamic Modelling in Behavioural Ecology. Princeton University Press, Princeton.Google Scholar
  52. Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.Google Scholar
  53. Mitani, J. C., and Rodman, P. (1979). Territoriality: The relation of ranging pattern and home range size to defendability, with an analysis of territoriality among primate species. Behav.Ecol. Sociobiol. 5: 241–251.Google Scholar
  54. Nettle, D. (1999). Linguistic Diversity, Oxford University Press, Oxford.Google Scholar
  55. Nettle, D., and Dunbar, R. I.M. (1997). Social markers and the evolution of reciprocal exchange.Curr. Anthropol. 38: 93–98.Google Scholar
  56. Nievergelt, C. M., Digby, L. J., Ramakrishnan, U., and Woodruff, D. S. (2000). Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. Int. J. Primatol. 21: 1–20.Google Scholar
  57. Noë , R. (1990). A veto game played by baboons: A challenge to the Prisoner's Dilemma as a paradigm for reciprocity and cooperation. Anim. Behav. 39: 78–90.Google Scholar
  58. Noë , R. (2001). Biological markets: Partner choice as the driving force behind the evolution of mutualisms. In Economics in Nature, Cambridge University Press, Cambridge, pp. 93–118.Google Scholar
  59. Pepper, J. W., and Smuts, B. B. (2000). The evolution of cooperation in an ecological context: An agent-based model. In Kohler, T. A., and Gunerman, G. J. (eds.), Dynamics in Human and Primate Societies: Agent-Based Modelling of Social and Spatial Processes, Oxford University Press, Oxford, pp. 45–76.Google Scholar
  60. Platt, J. R. (1964). Strong inference. Science 147: 347–353.Google Scholar
  61. Roberts, G., and Sherratt, T. (1998). Development of co-operative relationships through increasing investment. Nature (London) 394: 175–179.Google Scholar
  62. Schino, G. (2001). Grooming, competition and social rank among female primates: A metaanalysis.Anim. Behav. 62: 265–271.Google Scholar
  63. Schoener, T.W. (1971). Theory of foraging strategies. Annu. Rev. Ecol. Syst. 2: 379–404.Google Scholar
  64. Seyfarth, R. M. (1977). A model of social grooming among adult female monkeys. J. Theor.Biol. 65: 671–698.Google Scholar
  65. Silk, J. B., Kaldor, E., and Boyd, R. (2000). Cheap talk when interests conflict. Anim. Behav. 59: 423–432.Google Scholar
  66. Strier, K. B. (1993/1994). Viability analyses of an isolated population of muriqui monkeys (Brachyteles arachnoides): Implications for primate conservation and demography. Primate Conserv. 14- 15: 43–52.Google Scholar
  67. Swart, J., Lawes, M. J., and Perrin, M. R. (1993). A mathematical model to investigate the demographic viability of low-density samango monkey (Cercopithecus mitis) populations in Natal, South Africa. Ecol. Modell. 70: 289–303.Google Scholar
  68. te Boekhorst, I. J. A., and Hemelrijk, C. (2000). Nonlinear and synthetic models of primate societies. In Kohler, T., and Gumerman, G. (eds.), Dynamics in Human and Primate Societies: Agent-Based Modelling of Social and Spatial Processes, Oxford University Press, Oxford, pp. 19–44.Google Scholar
  69. te Boekhorst, I. J. A., and Hogeweg, P. (1994a). Self-structuring in artificial "CHIMPs" offers new hypotheses for male grouping in chimpanzees. Behaviour 130: 229–252.Google Scholar
  70. te Boekhorst, I., and Hogeweg, P. (1994b). Effects of tree size on travel band formation in orangutans: Data-analysis suggested by a model. In Brooks, R. A., and Maes, P. (eds.), Artificial Life, MIT Press, Cambridge, MA, pp. 119–129.Google Scholar
  71. van Schaik, C., and Dunbar, R. I. M. (1990). The evolution of monogamy in large primates: A new hypothesis and some critical tests. Behaviour 115: 30–62.Google Scholar
  72. Waser, P. M. (1976). Cercocebus albigena: Site attachment, avoidance and intergroup spacing.Am. Nat. 110: 911–935.Google Scholar
  73. Waser, P.M. (1982). Primate polyspecific associations: Do they occur by chance? Anim. Behav. 30: 1–8.Google Scholar
  74. Williamson, D. (1997). Primate Socioecology: Development of a Conceptual Model for the Early Hominids, PhD Thesis, University of London.Google Scholar
  75. Williamson, D., and Dunbar, R. I. M. (1999). Energetics, time budgets and group size. In Lee, P. C. (ed.), Comparative Primate Socioecology, Cambridge University Press, Cambridge, pp. 320–328.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • R. I. M. Dunbar
    • 1
  1. 1.School of Biological SciencesUniversity of LiverpoolLiverpoolEngland

Personalised recommendations