Boundary-Layer Meteorology

, Volume 104, Issue 1, pp 1–52 | Cite as

Cases-97: Late-Morning Warming And Moistening Of The Convective Boundary Layer Over The Walnut River Watershed

  • Margaret A. LeMone
  • Robert L. Grossman
  • Robert T. Mcmillen
  • Kuo-Nan Liou
  • S.C. Ou
  • Stuart Mckeen
  • Wayne Angevine
  • Kyoko Ikeda
  • Fei Chen


Aircraft, radiosonde, surface-flux, and boundary-layer windprofiler data from the Cooperative Atmosphere Surface Exchange Study's 1997 field project, CASES-97, are combined with synoptic data to study the evolution of the vertically-averaged mixed-layerpotential temperature [Θ]and mixing-ratio [Q] onthree nearly-cloudless days from 1000 CST to 1200CST (local noon is approximately 1230 CST). This was achieved through examination of the terms in the time-tendency (`budget')equations for [Θ]and [Q]. We estimate three of the terms –local time rate of change, vertical flux divergence, andhorizontal advection. For the [Q]-budget, vertical flux divergence usually dominates, buthorizontal advection is significant on one of the three days. The [Q]-budget balances for two of the three days to within the large experimental error. For the Θ-budget,vertical flux divergence accounts for most of the morningwarming, with horizontal advection of secondary importance.The residual in the Θ-budget has the same sign for all three days, indicating that not all the heating is accounted for. We can balance the [Θ]-budgets to within experimental error on two of the three days by correcting the vertical-flux divergence for apparent low biases in the flux measurements of one of the aircraft and in the surface fluxes, and accounting for direct heating of the mixed layer by radiative flux divergence allowing for the effects of carbonaceous aerosols. The [Θ];-budget with these corrections also balances on the third day if horizontal gradients from synoptic maps are used to estimate the horizontal advection. However, the corrected budget for this day does not balance if the horizontal gradient in the advection term is estimated using CASES-97aircraft and radiosondes; we suggest that persistent mesoscale circulations led to an overestimate of the horizontal gradient andhence horizontal advection.

Convective boundary layer Diurnal cycle Mixed layer Radiative heating Surface-mixed layer interaction Vegetation and soil moisture effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andre, C., Goutorbe, J.-P., Perrier, A., Becker, F., Bessemoulin, P., Bougeault, P., Brunet, Y., Brutsaert, W., Carlson, T., Cuenca, R., Gash, J., Gelpe, J., Hildebrand, P., Lagouarde, J. P., Lloyd, C., Mahrt, L., Mascart, P., Mazaudier, C., Noilhan, J., Ottle, C., Payan, M., Phulpin, T., Stull, R., Shuttleworth, J., Schmugge, T., Taconet, O., Tarrieu, C., Thepenier, R. M., Valancogne, C., Vidal-Madjar, D., and Weill, W.: 1988, 'Evaporation over Land-Surfaces: First Results from HAPEX-MOBILHY Special Observing Period', Ann. Geophys. 6, 477–492.Google Scholar
  2. Angevine, W. M.: 1999, 'Entrainment Results Including Advection and Case Studies from the Flatland Boundary Layer Experiments', J. Geophys. Res. 104, 30,947–30,963.Google Scholar
  3. Angevine, W. M. and MacPherson, J. I.: 1995, 'Comparison of Wind Profiler and Aircraft Wind Measurements at Chebogue Point, Nova Scotia', J. Atmos. Oceanic Tech. 12, 421–426.Google Scholar
  4. Angevine, W. M., Bakwin, P. S., and Davis, K. J.: 1998a, 'Wind Profiler and RASS Measurements Compared with Measurements from a 450-m-Tall Tower', J. Atmos. Oceanic Tech. 15, 818–825.Google Scholar
  5. Angevine, W. M., Grimsdell, A. W., McKeen, S. A., and Warnock, J. M.: 1998b, 'Entrainment Results from the Flatland Boundary Layer Experiments', J. Geophys. Res. 103, 13,689–13,701.Google Scholar
  6. Auble, D. R. and Meyers, T. M.: 1992, 'An H2O and CO2 Open Path Gas Analyzer for Use with Eddy Flux Systems', Boundary-Layer Meteorol. 59, 243–256.Google Scholar
  7. Avissar, R. and Chen, F.: 1993, 'Development and Analysis of Prognostic Equations for Mesoscale Kinetic Energy and Mesoscale (Subgrid-Scale) Fluxes for Large Scale Atmospheric Models', J. Atmos. Sci. 50, 3751–3774.Google Scholar
  8. Barr, A. G. and Betts, A. K.: 1997, 'Radiosonde Boundary Layer Budgets above a Boreal Forest', J. Geophys. Res. 102, 29,205–29,212.Google Scholar
  9. Betts, A. K.: 1992, 'FIFE Atmospheric Boundary Layer Budget Methods', J. Geophys. Res. 97, 18,523–18,532.Google Scholar
  10. Betts, A. K., Desjardins, R. L., MacPherson, J. I., and Kelly, R. D.: 1990, 'Boundary Layer Heat and Moisture Budgets from FIFE', Boundary-Layer Meteorol. 50, 109–137.Google Scholar
  11. Betts, A. K., Desjardins, R. L., and MacPherson, J. I.: 1992, 'Budget Analysis of the Boundary Layer Grid Flights during FIFE 1987', J. Geophys. Res. 97(D17), 18,533–18,546.Google Scholar
  12. Bougeault, P., Bret, B., Lacarrere, P., and Noilhan, J.: 1991, 'An Experiment with an Advanced Surface Parameterization in a Mesobeta-Scale Model. Part II: The 16 June 1986 Simulation', Mon. Wea. Rev. 119, 2374–2392.Google Scholar
  13. Brandes, E. A., Vivekanandan J., and Wilson, J. W.: 1999, 'A Comparison of Radar Reflectivity Estimates of Rainfall from Collocated Radars', J. Atmos. Oceanic Technol. 16, 1264–1272.Google Scholar
  14. Brown, E. N., Friehe, C. A., and Lenschow, D. H.: 1983, 'The Use of Pressure Fluctuations on the Nose of an Aircraft for Measuring Pressure Fluctuation', J. Clim. Appl. Meteorol. 22, 171–180.Google Scholar
  15. Chen, F. and Avissar, R.: 1994, 'The Impact of Land-Surface Wetness Heterogeneity on Mesoscale Heat Fluxes', J. Appl. Meteorol. 50, 3751–3774.Google Scholar
  16. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., Duan, Y., Ek, M., and Betts, A.: 1996, 'Modeling of Land-Surface Evaporation by Four Schemes and Comparison with FIFE Observations', J. Geophys. Res. 101, 7251–7268.Google Scholar
  17. Coulter, R.: 1999, 'Convergence Estimates over the ABLE Region during CASES-97 Obtained from Radar Wind Profiler and Sodar Data', in Preprints 13th Symposium on Boundary Layers and Turbulence, American Meteorological Society, Dallas, 10-15 Jan., pp. 508–511.Google Scholar
  18. Coulter, R. L. and Holdridge, D. H.: 1998, 'A Procedure for the Automatic Estimation of Mixed Layer Height', in Proceedings of the 8th Atmospheric Radiation Measurement (ARM) Program Science Team Meeting, Tucson, Department of Energy Office of Energy Researth, pp. 177–180.Google Scholar
  19. Coulter, R., Klazura, J., Lesht, B. M., Shannon, J. D., Sisterson, D. L., and Wesely, M. L.: 1998, 'Using the ABLE Facility to Observe Urbanization Effects on Planetary Boundary Layer Processes', in Proceedings 10th Joint Conference on the Applications of Air Pollution Meteorology, American Meteorological Society, Air and Waste Management Association Joint Conference, Phoenix, AZ, 11-16 Jan, pp. J76–J79.Google Scholar
  20. Crawford, T. L. and Dobosy, R. J.: 1992, 'A Sensitive, Fast-Response Probe to Measure Turbulence and Heat Flux from Any Airplane', Boundary-Layer Meteorol. 59, 257–278.Google Scholar
  21. Dalu, G. A., Pielke, R. A., Avissar, R., Kallos, G., Baldi, M., and Guerrini, A: 1991, 'Linear Impact of Thermal Inhomogeneities on Mesoscale Atmospheric Flux with Zero Synoptic Wind', Ann.Geophys. 9, 641–647.Google Scholar
  22. Eloranta, E. W. and Forrest, D. K.: 1992, 'Volume-Imaging Lidar Observations of the Convective Structure Surrounding the Flight Path of a Flux-Measuring Aircraft', J. Geophys. Res. 97, 18,383–18,393.Google Scholar
  23. Fitzjarrald, D. R., Acevedo, O. C., and Moore, K. E.: 2001, 'Climatic Consequences of Leaf Presence in the Eastern United States', J. Climate 14, 598–614.Google Scholar
  24. Freedman, J. M., Fitzjarrald, D. R., Moore, K. E., and Sakai, R. K.: 2001, 'Boundary Layer Clouds and Vegetation-Atmosphere Feedbacks', J. Climate 14, 180–197.Google Scholar
  25. Friehe, C. A. and Khelif, D.: 1993, 'Fast Response Aircraft Temperature Sensors', J. Atmos. Oceanic Tech. 9, 784–795.Google Scholar
  26. Fu, Q., and Liou, K. N.: 1993, 'Parameterization of the Radiative Properties of Cirrus Clouds', J. Atmos. Sci. 50, 2008–2025.Google Scholar
  27. Furger, Markus, Whiteman, C. D., and Wilczak, J. M., 1995, 'Uncertainty of Boundary Layer Heat Budget Computed from Wind Profile-RASS Networks', Mon. Wea. Rev. 123, 790–799.Google Scholar
  28. Geiger, R.: 1966, The Climate Near the Ground (revised edition), Harvard University Press, 610 pp.Google Scholar
  29. Grossman, R. L.: 1977, 'A Procedure for the Correction of Biases inWinds Measured from Aircraft', J. Appl. Meteorol. 6, 654–658.Google Scholar
  30. Grossman, R. L.: 1992, 'Convective Boundary Layer Budgets of Moisture and Sensible Heat over an Unstressed Prairie', J. Geophys. Res. 97, 18,425–18,438.Google Scholar
  31. Grossman, R. L. and Gamage, N.: 1995, 'Moisture Flux and Mixing Processes in the Daytime Continental Convective Boundary Layer', J. Geophys. Res. 100, 25,665–25,674.Google Scholar
  32. Hardy, K. R. and Ottersten, H.: 1969, 'Radar Investigations of Convective Patterns in the Clear Atmosphere', J. Atmos. Sci. 26, 666–672.Google Scholar
  33. Horst, T. W. and Oncley, S. P.: 1995, 'Flux-PAM Measurement of Scalar Fluxes Using Cospectral Similarity', in Proceedings Ninth Symposium on Meteorological Observations and Instrumentation, Charlotte, INC, American Meteorological Society, pp. 495–500.Google Scholar
  34. LeMone, M. A. and Grossman, R.: 2000, 'Mesoscale and Diurnal Variability of 2-m Temperature and Mixing Ratio in CASES-97', in Proceedings of the 14th Symposium on Boundary Layer and Turbulence, Aspen, 7-11 August, pp. 5–8.Google Scholar
  35. LeMone, M. A., Grossman, R., Coulter, R., Wesely, M., Klazura, G., Poulos, G., Blumen, W., Lundquist, J., Cuenca, R., Kelly, S., Brandes, E., Oncley, S., McMillen, R., and Hicks, B.: 2000, 'Land-Atmosphere Interaction Research and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE', Bull. Amer. Meteorol. Soc. 81, 757–780Google Scholar
  36. LeMone, M. A., Zhou, M., Moeng, C.-H., Lenschow, D. H., Miller, L. J., and Grossman, R. L.: 1999, 'An Observational Study ofWind Profiles in the Baroclinic Convective Planetary Boundary Layer', Boundary-Layer Meteorol. 90, 47–82.Google Scholar
  37. Lenschow, D. H.: 1972: The Measurement of Air Velocity and Temperature Using the NCAR Buffalo Aircraft Measuring System, NCAR Technical Note NCAR-TN-EDD-74, 39 pp.Google Scholar
  38. Lenschow, D. H.: 1995, 'Micrometeorological Techniques for Measuring Biosphere-Atmosphere Trace Gas Exchange', in Pamela Matson and Robert Harriss (eds.), Biogenic Trace Gages: Measuring Emissions from Soil and Water, Chap. 5, Blackwell Science, Cambridge, MA, pp. 126–163.Google Scholar
  39. Lenschow, D. H. and Stankov, B. B.: 1986, 'Length Scales in the Convective Boundary Layer', J. Atmos. Sci. 43, 1198–1209.Google Scholar
  40. Lenschow, D. H., Wyngaard, J. C., and Pennell, W. T.: 1980, 'Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer', J. Atmos. Sci. 37, 1313–1326.Google Scholar
  41. Lilly, D. K.: 1983, 'Mesoscale Variability of the Atmosphere', NATO Advanced Study Institute on Mesoscale Meteorology - Theories, Observations and Models, Bonas, France, July 13-31, 1982. NATO ASI Series, Series C: Mathematical and Physical Science, 114, 13–24.Google Scholar
  42. Mahrt, L.: 1998, 'Flux Sampling Errors for Aircraft and Towers', J. Atmos. Oceanic Tech. 15, 416–429.Google Scholar
  43. Mahrt, L. and Ek, M.: 1993, 'Spatial Variability of Turbulent Fluxes and Roughness Lengths in HAPEX-MOBILHY', Boundary-Layer Meteorol. 65, 381–400.Google Scholar
  44. Mahrt, L., Sun, J., Vickers, D., MacPherson, J. I., Pederson, J. R., and Desjardins, R. L.: 1994, 'Observations of Fluxes and Inland Breezes over a Heterogeneous Surface', J. Atmos. Sci. 51, 2484–2499.Google Scholar
  45. Mann, J., and Lenschow, D. H.: 1994, 'Errors in Airborne Flux Measurements', J. Geophys. Res. 99, 14,519–14,526.Google Scholar
  46. Martner, B. E., Wuertz, D. B., Stankov, B. B., Strauch, R. G., Westwater, E. R., Gage, K. S., Ecklund, W. L., Martin, C. L., and Dabberdt, W. F.: 1993, 'An Evaluation of Wind Profiler, RASS, and Microwave Radiometer Performance', Bull. Amer. Meteorol. Soc. 74, 599–613.Google Scholar
  47. Millitzer, J. M., Mihaelis, M. C., Semmer, S. R., Norris, K. S., Horst, T. W., Oncley, S. P., Delany, A. C., and Brock, F. V.: 1995, 'Development of the Prototype PAM III/Flux-PAM Surface Meteorological Station', in Proceedings Ninth Symposium on Meteorological Observations and Instrumentation, Charlotte, NC, American Meteorological Society, pp. 490–494.Google Scholar
  48. NAPAP (National Acid Precipitation Program): 1990, Visibility: Existing and Historical Conditions- Causes and Effects, Vol. III, Report 24, U.S. Government Printing Office, Washington, D.C., 129 pp.Google Scholar
  49. Nicholls, S., LeMone, M. A., and Sommeria, G.: 1982, 'The Simulation of a Fair Weather Marine Boundary Layer in GATE Using a Three-DimensionalModel', Quart. J. Roy. Meteorol. Soc. 108, 167–190.Google Scholar
  50. Ou, S. C., Liou, K. N., Takano, Y., Rao, N. X., Fu, Q., Heymsfield, A. J., Miloshevich, L. M., Baum, B., and Kinne, S. A.: 1995, 'Remote Sounding of Cirrus Cloud Optical Depths and Ice Crystal Sizes from AVHRR Data: Verification Using FIRE II IFO Measurements', J. Atmos. Sci. 52, 4143–4158.Google Scholar
  51. Parsons, D. B., Yoneyama, K., and Redelsperger, J.-L.: 2000, 'The Evolution of the TropicalWestern Pacific Atmosphere-Ocean System Following the Arrival of a Dry Intrusion', Quart. J. Roy. Meteorol. Soc. 126, 517–548.Google Scholar
  52. Rogers, E., Black, T. L., Deaven, D. G., DiMego, G. J., Zhao, Q., Baldwin, M., Junker, N. W., and Lin, Y.: 1996, 'Changes to the Operational “Early” Eta Analysis/Forecast System at the National Centers for Environmental Prediction', Wea. Forecast. 11, 391–413.Google Scholar
  53. Satheesh, S. K., and Ramanathan, V., 2000, 'Large Differences in Tropical Aerosol Forcing at the Top of the Atmosphere and Earth's Surface', Nature 405, 60–63.Google Scholar
  54. Segal, M., Schreiber, W. E., Kallos, G., Garratt, J. R., Rodi, A., Weaver, J., and Pielke, R. A.: 1989, 'The Impact of Crop Areas in Northeast Colorado on Midsummer Mesoscale Thermal Circulations', Mon. Wea. Rev. 117, 809–825.Google Scholar
  55. Sellers, P. J., Hall, F. G., Asrar, G., Strebel D. E., and Murphy, R. E.: 1992, 'An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)', J. Geophys. Res. 97, 18,345–18,373.Google Scholar
  56. Sellers, P. J., Margolis, H., Kelly, B., Baldocchi, D., den Hartog, J., Cihlar, J., Ryan, Goodison, B., Crill, P., Ranson, J., Lettenmaier, D., and Wickland, D.: 1995, 'The Boreal Ecosystem-Atmospheric Study (BOREAS): An Overview and Early Results from the 1994 Field Year', Bull. Amer. Meteorol. Soc. 76, 1,549–1,577.Google Scholar
  57. Shaw, W. J. and Doran, J. C.: 2001, 'Observations of Systematic Boundary Layer Divergence Patterns and their Relationship to Land Use and Topography', J. Climate 14, 1753–1764.Google Scholar
  58. Stamnes, K., Tsay, S.-C., Wilcombe, W., and Jaraweera, K.: 1988, 'Numerically Stable Algorithm for Discrete-Ordinate Method Radiative Transfer in Multiple Scattering and Emitting Layered Media', Appl. Optics 12, 2502–2509.Google Scholar
  59. Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Preuger, J. H., Starks, P. J., and Wesely, M. L.: 2000, 'Correcting Eddy-Covariance Flux Estimates over a Grassland', Agric. For. Meteorol. 103, 279–300.Google Scholar
  60. Weckwerth, T. M., Wilson, J. W., and Wakimoto, R. M.: 1996, 'Thermodynamic Variability within the Convective Boundary Layer Due to Horizontal Convective Rolls', Mon. Wea. Rev. 124, 769–784.Google Scholar
  61. Wellman, D. L., Wilkison, W. W., Luke, W. T., McMillen, R. T., Auble, D. L., Gunter, R. L., and Watson, T. B.: 1996, 1995 Summary Report Southern Oxidants Study: Technical Support for Airborne Measurements with Chemical and Meteorological Variables, NOAA Technical Memo, ERL ARL-217. 56 pp.Google Scholar
  62. Yates, D. N., Chen, F., LeMone, M. A., Qualls, R., Oncley, S. P., Grossman, R. L., and Brandes, E. L.: 2001, 'A CASES Dataset for Analyzing and Parameterizing the Effects of Land-Surface Heterogeneity on Area-Averaged Surface Heat Fluxes', J. Appl. Meteorol. 40, 921–937.Google Scholar
  63. Zipser, E. J. and Johnson, R. H.: 1998, 'Systematic Errors in Radiosonde Humidities: A Global Problem?', in Proceedings 10th Symposium on Measurements, Observations, and Instrumentation, Phoenix, AZ, American Meteorological Society, pp. 72–73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Margaret A. LeMone
    • 1
  • Robert L. Grossman
    • 2
  • Robert T. Mcmillen
    • 3
  • Kuo-Nan Liou
    • 4
  • S.C. Ou
    • 4
  • Stuart Mckeen
    • 5
  • Wayne Angevine
    • 5
  • Kyoko Ikeda
    • 1
  • Fei Chen
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderU.S.A.
  2. 2.PAOSUniversity of ColoradoBoulderU.S.A
  3. 3.NOAA Atmospheric Turbulence and Diffusion DivisionOak RidgeU.S.A
  4. 4.Department of Atmospheric ScienceUCLALos AngelesU.S.A
  5. 5.CIRESUniversity of Colorado and NOAA Aeronomy LaboratoryBoulderU.S.A

Personalised recommendations