Transport in Porous Media

, Volume 47, Issue 3, pp 337–362

Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory

Article

Abstract

In Part I macroscopic field equations of mass, linear and angular momentum, energy, and the quasistatic form of Maxwell's equations for a multiphase, multicomponent medium were derived. Here we exploit the entropy inequality to obtain restrictions on constitutive relations at the macroscale for a 2-phase, multiple-constituent, polarizable mixture of fluids and solids. Specific emphasis is placed on charged porous media in the presence of electrolytes. The governing equations for the stress tensors of each phase, flow of the fluid through a deforming medium, and diffusion of constituents through such a medium are derived. The results have applications in swelling clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, chromotography, drug delivery, and other swelling systems.

mixture theory electrodynamics swelling constitutive equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphase thermomech anics with interfaces. Int. J. Engng Sci. 32(11), 1717–1738.Google Scholar
  2. Benach, R. and Müller, I.: 1973, Thermodynamics and the description of magnetizable dielectric mixtures of fluids, Arch. Ration. Mech. Anal. 53(4), 312–346.Google Scholar
  3. Bennethum, L. S. and Cushman, J. H.: 1996a, Multiscale, hybrid mixture theory for swelling systems. I: Balance laws, Int. J. Engng Sci. 34(2), 125–145.Google Scholar
  4. Bennethum, L. S. and Cushman, J. H.: 1996b, Multiscale, hybrid mixture theory for swelling systems. II: Constitutive theory, Int. J. Engng Sci. 34(2), 147–169.Google Scholar
  5. Bennethum, L. S. and Cushman, J. H.: 2002, Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics. I. Macroscale field equations, Transport in Porous Media 47(3), 309–336.Google Scholar
  6. Bennethum, L. S. and Giorgi, T.: 1997, Generalized forchheimer law for two-phase flow based on hybrid mixture theory, Transport in Porous Media 26(3), 261–275.Google Scholar
  7. Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 1996, Clarifying mixture theory and the macroscale chemical potential for porous media, Int. J. Engng Sci. 34(14), 1611–1621.Google Scholar
  8. Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 1997, Modified Darcy's law, Terzaghi's effective stress principle and Fick's law for swelling clay soils, Comp. Geotech. 20(3/4), 245–266.Google Scholar
  9. Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 2000, Macroscale thermodynamics and the chemical potential for swelling porous media, Transport in Porous Media 39(2), 187–225.Google Scholar
  10. Bensoussan, A., Lions, J. L. and Papanicolau, G.: 1978, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam.Google Scholar
  11. Bowen, R. M.: 1976, Theory of mixtures, in: A. C. Eringen, (ed.), Continuum Physics, Academic Press, New York.Google Scholar
  12. Bowen, R. M.: 1982, Compressible porous media models by use of the theory of mixtures, Int. J. Engng Sci. 20, 697–735.Google Scholar
  13. Callen, H. B.: 1985, Thermodynamics and An Introduction to Thermostatistics, Wiley, New York.Google Scholar
  14. Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal. 13, 167–178.Google Scholar
  15. Cushman, J. H.: 1990, Molecular-scale lubrication, Nature 347(6290), 227–228.Google Scholar
  16. Douglas, J., Jr. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, in: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 177–222.Google Scholar
  17. Eringen, A. C.: 1967, Mechanics of Continua, Wiley, New York.Google Scholar
  18. Eringen, A. C.: 1998, A mixture theory of electromagnetism and superconductivity, Int. J. Engng Sci. 36(5,6), 525–543.Google Scholar
  19. Gray, W. G. and Hassanizadeh, S. M.: 1991, Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27, 1855–1863.Google Scholar
  20. Gu, W. Y., Lai, W. M. and Mow, V. C.: 1999, Transport of multi-electrolytes in charged hydrated biological soft tissues, Transport in Porous Media 34, 143–157.Google Scholar
  21. Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems. 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2, 191–208.Google Scholar
  22. Hassanizadeh, S. M. and Gray, W. G.: 1980, General conservation equations for multiphase systems. 3. Constitutive theory for porous media, Adv. Water Resour. 3, 25–40.Google Scholar
  23. Hill, T. L.: 1968, Thermodynamics for Chemists and Biologists, Addison-Wesley, London.Google Scholar
  24. Huyghe, J. M. and Janssen, J. D.: 1999, Thermo-chemo-electro-mechanical formulation of saturated charged porous solids, Transport in Porous Media 34, 129–141.Google Scholar
  25. Jou, D., Casas-Vázquez, J. and Lebon, G.: 1996, Extended Irreversible Thermodynamics,Springer-Verlag, New York.Google Scholar
  26. Liu, I-S.: 1972, Method of lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal. 46, 131–148.Google Scholar
  27. Müller, I. and Ruggeri, T.: 1993, Extended Thermodynamics, Springer-Verlag, New York.Google Scholar
  28. Murad, M. A., Bennethum, L. S. and Cushman, J. H.: 1995, A multi-scale theory of swelling porous media. I. Application to one-dimensional consolidation, Transport in Porous Media, 19, 93–122.Google Scholar
  29. Murad, M. A. and Cushman, J. H.: 1996, Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engng Sci. 34(3), 313–336.Google Scholar
  30. Plumb, O. A. and Whitaker, S.: 1990, Diffusion, adsorption and dispersion in porous media. small-scale averaging and local volume averaging, in: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 97–176.Google Scholar
  31. del Rio, J. A. and Whitaker, S.: 2000a, Maxwell's equations in two-phase systems I: Local electrodynamic equilibrium, Transport in Porous Media 39, 159–186.Google Scholar
  32. del Rio, J. A. and Whitaker, S.: 2000b, Maxwell's equations in two-phase systems II: Two-equation model, Transport in Porous Media 39, 259–287.Google Scholar
  33. Sanchez-Palencia, E.: 1980, Non-homegeneous media and vibration theory, in: Lecture Notes in Physics, Springer-Verlag, New York.Google Scholar
  34. Sasidhar, V. and Ruckestein, E.: 1981, Electrolyte osmosis through capillaries, J. Coll. Int. Sci. 82(2),439–457.Google Scholar
  35. Truesdell, C. and Noll, W.: 1965, The Non-Linear Field Theories of Mechanics, Handbuch der Physik III/3, Springer-Verlag.Google Scholar
  36. Whitaker, S.: 1967, Diffusion and dispersion in porous media, AIChEJ 13, 420–438.Google Scholar
  37. Whitaker, S.: 1969, Advances in theory of fluid motion in porous media, Indust. Engng Chem. 61(12),14–28.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Center for Computational MathematicsUniversity of Colorado at DenverDenverU.S.A. e-mail
  2. 2.Center for Applied MathPurdue UniversityW. LafayetteU.S.A
  3. 3.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeU.S.A

Personalised recommendations