, Volume 469, Issue 1–3, pp 117–129 | Cite as

Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification

  • S.A. Ostroumov


Top-down control is an important type of interspecies interactions in food webs. It is especially important for aquatic ecosystems. Phytoplankton grazers contribute to the top-down control of phytoplankton populations. The paper is focused on the role of benthic filter feeders in the control of plankton populations as a result of water filtering and the removal of cells of plankton from the water column. New data on the inhibitory effects of surfactants and detergents on benthic filter-feeders (Unio tumidus, U. pictorum, Mytilus galloprovincialis, M. edulis and Crassostrea gigas) are presented and discussed. Importance and efficiency of that approach to the problems of eutrophication and water self-purification is pointed out. Chemical pollution may pose a threat to the natural top-down control of phytoplankton and water self-purification process. The latter is considered an important prerequisite for sustainable use of aquatic resources.

self-purification filter-feeders surfactants detergents bivalves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alimov, A. F., 1981. Functional Ecology of Freshwater Bivalves (Funktzionalnaja Ekologija Presnovodnykh Dvustvorchatykh Molluskov). Nauka press, Leningrad: 248 pp.Google Scholar
  2. Bressan, M., R. Brunetti, S. Casellato, G. C. Fava, P. Giro, M. Marin, P. Negrisolo, L. Tallandini, S. Thomann, L. Tosoni, M. Turchetto & G. C. Campesan, 1989. Effects of linear alkylbenzene sulfonate (LAS) on benthic organisms. Tenside Surfactants Detergents 26: 148–158.Google Scholar
  3. Bul'on, V. V., V. N. Nikulina, E. B. Pavelyeva, L. A. Stepanova & T. V. Khlebovich, 1999. Microbial ‘loop’ in the trophic web of the lake plankton. J. gener. Biol. (Zhurnal obshchei Biologii) 60: 431–444.Google Scholar
  4. Chalaux, N., J. M. Bayona, M. I. Venkatesan & J. Albaiges, 1992. Distribution of surfactant markers in sediments from Santa Monica basin, Southern California. Mar. Pollut. Bull. 24: 403–407.Google Scholar
  5. Donkin, P., J. Widdows, S. V. Evans, C. M. Worrall & M. Carr, 1989. Quantitative structure-activity relationships for the effect of hydrophobic organic chemicals on rate of feeding by mussels (Mytilis edulis). Aquat. Toxicol. 14: 277–294.Google Scholar
  6. Donkin, P., J. Widdows, S. V. Evans & M. D. Brinsley, 1991. QSARs for the sublethal responses of marine mussels (Mytilus edulis). Sci. Tot. Envir. 109/110: 461–476.Google Scholar
  7. Donkin, P., J. Widdows, S. V. Evans, F. Staff & T. Yan, 1997. Effects of neurotoxic pesticides on the feeding rate of marine mussels Mytilus edulis. Pestic. Sci. 49: 196–209.Google Scholar
  8. Drewa, G., Z. Zbytniewski & K. Palgan, 1988. Influence of an anionic detergent (alkylbenzene sulphonate) on enzymes, moulting cycle and survival in the shrimp Cragon cragon L. Kieler Meeresforsch. Sonderheft 6: 454–462.Google Scholar
  9. Fernandez, P., M. Valls, J. M. Bayona & J. Albaiges, 1991. Occurrence of cationic surfactants and related products in urban coastal environments. Envir. Sci. Technol. 25: 547–550.Google Scholar
  10. Gutelmaher, B. L., 1986. Metabolism of Plankton as the Whole (Metabolizm Planktona Kak Edinogo Tzelogo). Nauka, Leningrad: 156 pp.Google Scholar
  11. Goryunova, S. V. & S. A. Ostroumov, 1986. Effects of an anionic surfactant on green algae and seedlings of some angiosperms (Vozdejstvije anionnogo deterghenta na zelenuju vodorosl' i prorostki nekotorykh pokrytosemennykh rastenij). Biological Sciences (Biologicheskie Nauki). 7: 84–86.Google Scholar
  12. Granmo, A., 1972. Development and growth of eggs and larvae of Mytilus edulis exposed to a linear dodecylbenzenesulphonate, LAS. Mar. Biol. 15: 356–358.Google Scholar
  13. Granmo, A., S. Kollberg, M. Berggren, R. Ekelund, K. Magnusson, L. Renberg & O. Wahlberg, 1991. Bioaccumulation of nonylphenol in caged mussels in an industrial coastal area of the Swedish coast. In Angeletti, G. (ed.), Organic Micropollutants in the Aquatic Environment. Kluwer Academic Publishers, Dordrecht: 71–79.Google Scholar
  14. Kartasheva, N. V. & S. A. Ostroumov, 1998. Tetradecyltrimethylammonium bromide (tetradetziltrimetilammonij bromid). Toxicological Bulletin (Toksikologicheskii Vestnik) 5: 30–32.Google Scholar
  15. Konstantinov, A. S., 1979. General Hydrobiology (Obshchaja Gidrobiologija). Vysshaya Shkola press, Moscow: 480 pp.Google Scholar
  16. Lewis, M. A., 1979. Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Wat. Res. 25: 101–113.Google Scholar
  17. Maki, A.W. & W. E. Bishop, 1979. Acute toxicity studies of surfactants to Daphnia magna and Daphnia pulex. Arch. Envir. Contam. Toxicol. 8: 599–612.Google Scholar
  18. Malcolm, H. M., P. D. Howe & S. Dobson, 1995. Toxicity of LAS to aquatic organisms. Toxicol. Ecotoxicol. News 2: 20–24.Google Scholar
  19. Marcomini, A., B. Pavoni, A. Sfriso & A. A. Orio, 1988. Aromatic surfactants in the marine environment: analysis and occurrence of LAS, NPEO and NP. United Nations Environmental Programme and World Health Organisation. Environmental contamination. 3rd International Conference-Venice. CEP consultants: 94–98 pp.Google Scholar
  20. Marin, M. G., M. Bressan & R. Brunetti, 1991. Effects of linear alkylbenzene sulphonate (LAS) on two benthic marine organisms. Aquat. Toxicol. 19: 241–248.Google Scholar
  21. Marin, M. G., L. Pivotti, G. Campesan, M. Turchetto & L. Tallandini, 1993. Effects and fate of sediment-sorbed linear alkylbenzene sulphonate (LAS) on the bivalve mollusc Mytilus galloprovincialis Lmk. Wat. Res. 28: 85–90.Google Scholar
  22. Martinez, J., J. Vives-Rego & J. Sanchez-Leal, 1989. The effect of chemical structure and molecular weight of commercial alkylbenzenes on the toxic response of Daphnia and naturally occuring bacteria in fresh and seawater. Wat. Res. 23: 569–572.Google Scholar
  23. Maximov, V. N., H. Nagel & S. A Ostroumov, 1988. Biotesting of waters polluted with the surfactant sulfonol and DNOC (Biotestirovanie vod, soderzhashchikh poverkhnostno-aktivnoje veshchestvo sulfonol and DNOK). Hydrobiol. J. (Gidrobiologicheskii Zhurnal) 24: 54–55.Google Scholar
  24. McHenery, J., G. Linley-Adams & D. Moore, 1991. Effects of dichlorvos exposure on the acetylcholinesterase levels of the gills of the mussel, Mytilus edulis L., experimental and field studies. Scottish Fisheries Working Paper, 16/91, The Scottish Office Agriculture and Fisheries Department, Aberdeen.Google Scholar
  25. Mitin, A., 1984. Effect of some environmental factors on the waterclearing activity of bivalves. Summary of Ph.D. Thesis, Moscow: 22 pp.Google Scholar
  26. Monakov, A. V., 1998. Feeding of Freshwater Invertebrates (Pitanie Presnovodnykh Bespozonochnykh). Institute of Ecological and Evolutionary Problems, Moscow: 320 pp.Google Scholar
  27. Nagel, H., S. A. Ostroumov & V. N. Maximov, 1987. Inhibition of growth of buckweat seedlings by sodium dodelyl sulfate (Inghibirovanije rosta prorostkov grechikhi pod vozdejstvijem dodecilsulfata natrija). Biol. Sci. (Biologicheskie Nauki) 12: 81–84.Google Scholar
  28. Newell, R., J. Cornwell, M. Owens & J. Tuttle, 1999. Role of benthic suspension-feeders in maintaining estuarine water quality. ASLO 1999 Meeting (February 1–5, 1999, Santa Fe) Abstract Book: 130–131.Google Scholar
  29. Nixon, S. W., C. A. Oviatt, C. Rogers & K. Taylor, 1971. Mass and metabolism of a mussel bed. Oecologia (Berl.) 8: 21–30.Google Scholar
  30. Ogilvie, S. & S. Mitchell, 1995. A model of mussel filtration in a shallow New Zealand lake, with reference to eutrophication control. Arch. Hydrobiol. 133: 471–482.Google Scholar
  31. Ostroumov, S. A., 1986. Introduction to Bio-Chemical Ecology. (Vvedenie v Biohimicheskuju Ekologiju). Moscow University Press, Moscow: 176 pp.Google Scholar
  32. Ostroumov, S. A., 1990. Some aspects of assessment of the biological activity of xenobiotics (Nekotorye aspekty otzenki biologicheskoi aktivnosti ksenobiotikov). Bulletin of Moscow University. Ser. 16. Biology (Vestnik Moskovskogo Universiteta. Ser. 16. Biologija). No. 3: 74–78.Google Scholar
  33. Ostroumov, S. A., 1991. Biological activities of water polluted by surfactants (Biologhicheskaja aktivnost' vod, soderzhashchikh poverkhnostno-aktivnyje veshchestva). Chemistry and Technology of Water (Khimija i Tekhnologija Vody). 13: 270–283.Google Scholar
  34. Ostroumov, S. A., 1994a. Ecotoxicology and biological activity of surfactants. Third European Conference on Ecotoxicology (Zurich, August 28–31, 1994). Abstracts. Abstract No. 6.26: 141.Google Scholar
  35. Ostroumov, S. A., 1994b. Some aspects of ecotoxicology and biochemical ecology of surfactants. Proceedings of the 6th International Congress of Ecology (21–26 August 1994, Manchester): 127.Google Scholar
  36. Ostroumov, S. A., 1998. Biological filtering and ecological machinery for self-purification and bioremediation in aquatic ecosystems: towards a holistic view. Rivista di Biologia/Biology Forum. 91: 247–258.Google Scholar
  37. Ostroumov, S. A., 1999. The ability of mussels to filter and purify the sea water is inhibited by surfactants. ASLO 1999 Meeting (February 1–5, 1999, Santa Fe) Abstract Book: 134.Google Scholar
  38. Ostroumov, S. A., 2000a. Biological Effects of Surfactants in Connection with the Anthropogenic Impact on the Biosphere. MAX Press, Moscow: 116 pp.Google Scholar
  39. Ostroumov, S. A., 2000b. Criteria of ecological hazards due to anthropogenic effects on the biota: searching for a system (Kriterii ekologhicheskoj opastnosti antropoghennykh vozdejstvij na biotu: poiski sistemy). Doklady Biological Sciences 371: 204–206 (the Russian edition: Dokl. Akad. Nauk 371: 844–846).Google Scholar
  40. Ostroumov, S. A., 2000c. The concept of aquatic biota as a labile and vulnerable component of the water self-purification system (Kontzeptzija vodnoi bioty kak labil'nogo i ujazvimogo zvena sistemy samoochishchenija vody). Doklady Biological Sciences 372: 286–289 (the Russian edition: Dokl. Akad. Nauk 372: 279– 282).Google Scholar
  41. Ostroumov, S. A., 2000d. Aquatic ecosystem: a large-scale diversi-fied bioreactor with a water self-purification function (Vodnaja ekosistema: krupnorazmernyj diversifitzirovannyj bioreaktor s funktzijej samoochishchenija vody). Doklady Biological Sciences 374: 514–516 (the Russian edition: Dokl. Akad. Nauk 374: 427–429).Google Scholar
  42. Ostroumov, S. A., 2000e. Inhibitory analysis of regulatory interactions in trophic webs (Ingibitornyi analiz regulyatornykh vzaimodeistvii v troficheskikh setyah). Dokl. Akad. Nauk 375: 847–849.Google Scholar
  43. Ostroumov, S. A. & V. D. Fedorov, 1999. The main components of self-purification of ecosystems and its possible impairment as a result of chemical pollution (Osnovnyje komponenty samoochishchenija ekosistem i vozmozhnost' ego narushenija v rezultate khimicheskogo zagrjaznenija). Bulletin of Moscow University. Ser. 16. Biology (Vestnik Moskovskogo Universiteta. Ser. 16. Biologija) 1: 24–32.Google Scholar
  44. Ostroumov, S. A., & M. Maertz-Wente, 1991. Effects of the nonionic surfactant on marine diatoms. Papers presented at the 201st National Meeting of American Chemical Society, Atlanta, GA, April 14–19, 1991. 31: 18–19.Google Scholar
  45. Ostroumov, S., P. Donkin & F. Staff, 1997. Inhibition by the anionic surfactant, sodium dodecyl sulphate, of the ability of mussels Mytilus edulis to filter and purify the sea water (Anionnoje poverkhnostno-aktivnoje veshchestvo inghibirujet sposobnost' midij filtrovat' i ochishchat' morskuju vodu). Vestnik Moskovskogo Universiteta. Ser. 16. Biologija. (Bulletin of Moscow University. Ser. 16. Biology) No. 3: 30–36.Google Scholar
  46. Ostroumov, S. A., P. Donkin & F. Staff, 1998. Filtration inhibition induced by two classes of synthetic surfactants in the bivalve mollusk (Narushenije filtracii dvustvorchatymi molluskami pod vozdejstvijem poverkhnostno-aktivnykh veshchestv dvukh klassov). Dokl. Akad. Nauk 362: 574–576.Google Scholar
  47. Pantani, C., N. Spreti, M. C. Maggitti & R. Germani, 1995. Acute toxicity of some synthetic cationic and zwitterionic surfactants to freshwater amphipod Echinogammarus tibaldii. Bull. Envir. Contam. Toxicol. 55: 179–186.Google Scholar
  48. Quiroga, J. M., D. Sales & A. Gomez-Parra, 1989. Experimental evaluation of pollution potential of anionic surfactants in the marine environment. Wat. Res. 23: 801–807.Google Scholar
  49. Reinertsen, H., A. Jensen, J. Koksvik, A. Langeland & Y. Olsen, 1990. Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can. J. Fish. aquat. Sci. 47: 166–173.Google Scholar
  50. Scholten, M., R. Jak, B. Clement, E. Foekema, P. Hernandez, K. Kaag, H. van Dokkum & M. Smit, personal communication, 1999.Google Scholar
  51. Seed, R. & T. H. Suchanek, 1992. Population and community ecology of Mytilus. In Gosling, E. (ed.), The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Elsevier, Amsterdam: 87–170.Google Scholar
  52. Sivak, A., M. Goyer, J. Permak & P. Thayer, 1982. Solution Behavior of Surfactants. Plenum Press, New York: 739 pp.Google Scholar
  53. Stuijfzand, S. C., M. H. S. Kraak, Y. A. Wink & C. Davids, 1995. Short-term effects of nickel on the filtration rate of the zebra mussel Dreissena polymorpha. Bull. Envir. Contam. Toxicol. 54: 376–381.Google Scholar
  54. Sushchenya, L. M., 1975. Quantitative Trends in the Feeding of Crustaceans. Nauka I Tehnika press, Minsk: 208 pp.Google Scholar
  55. Takadar, H. & R. Ishiwatari, 1991. Linear alkylbenzenes (LABs) in urban riverine and coastal sediments and their usefulness as a molecular indicator of domestic wastes. Wat. Sci. Technol. 23: 437–446.Google Scholar
  56. Telitchenko, M. M. & S. A. Ostroumov, 1990. Introduction to Problems of Biochemical Ecology (Vvedenie v Problemy Biochimicheskoi Ekologii). Nauka press, Moscow: 288 pp.Google Scholar
  57. Terzic, S. & M. Ahel, 1993. Determination of linear alkylbenzene sulphonates in the Krka river estuary. Bull. Envir. Contam. Toxicol. 50: 241–246.Google Scholar
  58. Varanka, I., 1987. Effect of mosquito killer insecticides on freshwater mussels. Comp. Biochem. Physiol. 86C: 157–162.Google Scholar
  59. Versteeg, D. J. & S. J. Shorter, 1992. Effect of organic carbon on the uptake and toxicity of quarternary ammonium compounds to the fathead minnow, Pimephales promelas. Envir. Toxicol. Chem. 11: 571–580.Google Scholar
  60. Waterbury, J. & S. A. Ostroumov, 1994. Effect of a non-ionic surfactant on marine cyanobacteria (Deistvie neionogennogo poverkhnostno-aktivnogo veshchestva na tzianobakterii). Microbiology (Mikrobiologiya) 63: 259–263.Google Scholar
  61. Widdows, J., P. Donkin, S. V. Evans, D. S. Page & P. N. Salkeld, 1995a. Sublethal biological effects and chemical contaminant monitoring of Sullom Voe (Shetland) using mussels (Mytilus edulis). Proc. r. Soc. Edinb. 103B: 99–112.Google Scholar
  62. Widdows, J., P. Donkin, M. D. Brinsley, S. V. Evans, P. N. Salkeld, A. Franklin, R. J. Law & M. J. Waldock, 1995b. Scope for growth and contaminant levels in North Sea mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 127: 131–148.Google Scholar
  63. Widdows, J. & D. Page, 1993. Effects of tributyltin and dibutyltin on the physiological energetics of the mussel, Mytilus edulis. Mar. Environ. Res. 35: 233–249.Google Scholar
  64. Widdows, J., & P. N. Salkeld, 1993. Practical procedures for the measurement of scope for growth. MAP Technical Report Series. UNEP, Athens. P. 71: 147–172.Google Scholar
  65. Wootton, J., 1992. Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology 73: 981–991.Google Scholar
  66. World Resources, 1995–1995. Oxford University Press, New York. 1994: 403 pp.Google Scholar
  67. Wurtsbaugh, W., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (U.S.A.). Oecologia 89: 168–175.Google Scholar
  68. Yablokov, A. V. & S. A. Ostroumov, 1983. Nature Conservation: Problems and Prospects (Ohrana Zhivoi Prirody: Problemy i Perspectivy). Lesprom Press, Moscow: 271 pp.Google Scholar
  69. Yablokov, A. V. & S. A. Ostroumov, 1985. Levels of Living Nature Conservation (Urovni Ohrany Zhivoi Prirody). Nauka Press, Moscow: 176 pp.Google Scholar
  70. Yablokov, A. V. & S. A. Ostroumov, 1991. Conservation of Living Nature and Resources: Problems, Trends, Prospect. Springer Verlag, Berlin, Heidelberg, New York: 271 pp.Google Scholar
  71. Zaika, V. E., 1992. Long-term Changes in Zoobenthos of the Black Sea (Mnogoletnie Izmeneniya Zoobentosa Chernogo Morya). Naukova Dumka, Kiev: 247 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S.A. Ostroumov
    • 1
  1. 1.Department of HydrobiologyMoscow State UniversityMoscowRussia

Personalised recommendations