Water, Air, and Soil Pollution

, Volume 137, Issue 1–4, pp 21–44 | Cite as

Heavy Metal Contamination in Sediments of Lake Nahuel Huapi, Nahuel Huapi National Park, Northern Patagonia, Argentina

  • Sergio Ribeiro GuevaraEmail author
  • Julieta Massaferro
  • Gustavo Villarosa
  • María Arribére
  • Andrea Rizzo


Trace metals (Sb, As, Br, Cs, Co, Cr, Ag and Hg), rare earth elements (Ce, Eu, La, Lu, Sm, Tb and Yb), and Sc. were analysed in suspended load and in two sediment cores from Lake Nahuel Huapi, Nahuel Huapi National Park, Patagonia, Argentina, by using Instrumental Neutron Activation Analysis. The core activity profiles of 210Pb and 137Cs were measured to estimate the age of the sediments. Silver was enriched in the upper layers of both cores, and correlated with the strong growthof the population of Bariloche City in the last 50 yr. Concentrations are higher in the core sampled near Bariloche, andindicate some transport in the water body. Silver concentrationsmeasured in the suspended load were 4.58±0.36 and 3.46±0.40 μg g-1 in the southern margin of the lake, near San Carlos de Bariloche City, whereas in the northern margin the concentrations were 1.68±0.18 and 1.88±0.23 μg g-1. Concentration ratio for silver in suspended load and upper core layers were equal in both sampling points. These facts suggest that Ag contents correspond to inputs associated with human activities. Bromine concentrations show a strong increase abovebase line values, similar to silver. In contrast, caesium, chromium, and cobalt concentrations do not differ from base linevalues. The metalloids antimony and arsenic show little variationwith regard to base line concentration. Noticeable, the mercurycontents found in the suspended load.

137Cs dating heavy metals Instrumental Neutron Activation Analysis Lake Nahuel Huapi 210Pb dating sediment contamination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, P. G. and Oldfield, F.: 1978, ‘The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment’, CATENA 5, 1–8.Google Scholar
  2. Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F., Anderson, N. J. and Battarbee, R. W.: 1986, ‘210Pb dating by low background gamma counting’, Hydrobiologia 143, 21–27.Google Scholar
  3. Bachtiar, T., Coakley, J. P. and Risk, M. J.: 1996, ‘Tracing sewage-contaminated sediments in Hamilton Harbour using selected geochemical indicators’, Sci. Tot. Environ. 179, 3–16.Google Scholar
  4. Bamba, B. M., Leermakers, M. and Baeyens, W.: 1997, ‘Influence of sediment preservation on total mercury and methylmercury analyses’, Water, Air, and Soil Pollut. 107, 277–288.Google Scholar
  5. Binford, M. W.: 1990, ‘Calculation and uncertainty analysis of 210Pb date for PIRLA project lake sediment cores’, J. Paleolimnology 3, 253–267.Google Scholar
  6. Condie, K. C.: 1993, ‘Chemical compositions and evolution of the upper continental crust: Contrasting results from surface samples and shales’, Chem. Geol. 104, 1–37.Google Scholar
  7. Cullers, R. L., Basu, A. and Suttner, L. J.: 1988, ‘Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tovacco Root Batholith, Montana, U.S.A.’, Chem. Geol. 70, 335–348.Google Scholar
  8. Cullers, R. L.: 1994, ‘The control on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, U.S.A.’, Geochim. et Cosmochim. Acta 22, 4955–4972.Google Scholar
  9. Cullers, R. L.: 1995, ‘The controls on the major - and trace - element variation of shales, siltstone and sanstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A.’, Chem. Geol. 123, 107–131.Google Scholar
  10. Deely, J. M., Tunnicliff, J. C., Orange, C. J. and Edgerley, W. H.: 1992, ‘Heavy metals in surface sediments of Waiwhetu Stream, Lower Hutt, New Zealand’, New Zealand Journal of Marine and Freshwater Research 26, 417–427.Google Scholar
  11. Firestone, R. B. and Shirley, V.: 1996, Table of Isotopes, John Wiley & Sons, New York, U.S.A.Google Scholar
  12. Hardaway, C., Wei-Jenq, Sheu and Meriwether, J. R.: 1998, ‘The effect of diagenetic processes on the radiochronology of soft sediments using 210Pb and 137Cs’, Microchem. J. 58, 127–134.Google Scholar
  13. Haskin, L. A., Haskin, M. A., Frey, F. A. and Wildeman, T. R.: 1968, ‘Relative and Absolute Terrestrial Abundances of the Rare Earths’, in L. H. Ahrens (ed.), Origin and Distribution of the Elements, Pergamon, Oxford, pp. 889–911.Google Scholar
  14. Hatje, V., Bidone, E. D. and Maddock, J. L.: 1997, ‘Estimation of the natural and anthropogenic components of heavy metal fluxes in fresh water Sinos river, Río Grande do Sul state, South Brazil’, Environ. Tech. 19, 483–487.Google Scholar
  15. Joshi, S. R.: 1987, ‘Nondestructive determination of lead-210 and radium-226 in sediments by direct photon analysis’, J. Radioanal. Nucl. Chem. 116(1), 169–182.Google Scholar
  16. Joshi, S. R.: 1989, ‘Determination of 241Am in sediments by direct counting of low-energy photons’, Applied Radiative Isotopes 40(8), 691–699.Google Scholar
  17. Joshi, S. R. and Shukla, B. S.: 1991, ‘Ab initio derivation of formulations for 210Pb dating of sediments', J. Radioanal. Nucl. Chem. 148(1), 73–79.Google Scholar
  18. Kestelman, A. J., Román Ross, G., Arribére, M. A. and Ribeiro Guevara, S.: 1997, ‘Heavy metals and rare earth geochemistry in unpolluted and contaminated areas of the Nahuel Huapi National Park, Río Negro, Argentina’, Project 8409/RB final report, International Atomic Energy Agency, (in Spanish).Google Scholar
  19. Longmore McCallan, M. E., O'Leary, B. M. and Rose, C. W.: 1983, ‘Caesium-137 profiles in the sediments of a partial-meromictic lake on Great Sandy Island (Fraser Island), Queensland, Australia’, Hydrobiol. 103, 21–27.Google Scholar
  20. Markert, B., Pedrozo, F., Geller, W., Friese, K., Korhammer, S., Baffico, G., Díaz, M. and Wölfl, S.: 1997, ‘A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina)’, Sci. Tot. Environ. 206, 1–15.Google Scholar
  21. Mughabghab, S. F., Divadeenam, M. and Holden, N. E.: 1981, Neutron Cross Sections, Vols. 1 and 2, Academic Press, New York, U.S.A.Google Scholar
  22. Pedrozo, F., Baffico, G. and Temporetti, P.: 1999, ‘Aporte Atmosférico de Nutrientes’, in R. Alcalde, H. Labollita and F. Pedrozo (eds), Lago Nahuel Huapi. Estudio de Calidad de Aguas, AIC, DPA and CRUB, UNC, Bariloche, Argentina, pp. 1–9.Google Scholar
  23. Ribeiro Guevara, S., Arribére, M., Masaferro, J., Villarosa, G. and Kestelman, A. J.: 1999, ‘Lead-210 sedimentation rates of lake sediment cores by using high resolution gamma-ray spectrometry’, Proceedings of the II South American Symposium on Isotope Geology, Córdoba, Argentina, September 1999, pp. 441–446.Google Scholar
  24. Ritchie, J. C., McHenry, J. C. and Gill, A. C.: 1973, ‘Dating recent reservoir sediments’, J. Limnol. Oceanogr. 18(2), 254–263.Google Scholar
  25. Robbins, J. A. and Herche, L. R.: 1993, Models and uncertainty in 210Pb dating of sediments', Radiochem. Limnol. 25, 217–222.Google Scholar
  26. Schelske, C. L., Peplow, A., Brenner, M. and Spencer, C. N.: 1994, ‘Low-background gamma counting: applications for 210Pb dating of sediments', J. Paleolimnol. 10, 115–128.Google Scholar
  27. Tuli, K. J.: 1995, Nuclear Wallet Cards, National Brookhaven Laboratory, U.S.A.Google Scholar
  28. Von Gunten, H. R. and Moser, R. N.: 1993, ‘How reliable is the 210Pb dating method? Old and new results from Switzerland’, J. Paleolimnol. 9, 161–178.Google Scholar
  29. US Environmental Protection Agency, U.S.A.: 1997, ‘Mercury study report Congress’, EPA-452/R-97.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Sergio Ribeiro Guevara
    • 1
    • 2
    Email author
  • Julieta Massaferro
    • 3
  • Gustavo Villarosa
    • 3
  • María Arribére
    • 1
    • 2
  • Andrea Rizzo
    • 1
    • 2
    • 3
  1. 1.Laboratorio de Análisis por Activación NeutrónicaCentro Atómico Bariloche and Instituto BalseiroBarilocheArgentina
  2. 2.Comisión Nacional de Energía Atómica and Universidad Nacional de CuyoArgentina
  3. 3.CONICETArgentina

Personalised recommendations