Boundary-Layer Meteorology

, Volume 104, Issue 1, pp 131–150 | Cite as

A Wind Tunnel Model for Quantifying Fluxes in the Urban Boundary Layer

  • Janet F. Barlow
  • Stephen E. Belcher


Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/Uδ represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,Uδ is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W→0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/Uδ varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/Uδ reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.

Air quality Fluxes Naphthalene Pollution Sublimation Urban meteorology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baik, J.-J. and Kim, J.-J.: 1999, 'A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons', J. Appl. Meteorol. 38, 1576–1589.Google Scholar
  2. Cheng, H. and Castro, I.P.: 2002, 'Near-Wall Flow Development after a Step Change in Surface Roughness', Boundary-Layer Meteorol., in press.Google Scholar
  3. C.R.C.: 1993, Handbook of Chemistry and Physics, 74th edn., CRC Press Inc.Google Scholar
  4. Davidson, M. J., Mylne, K. R., Jones, C. D., Phillips, J. C., Perkins, R. J., Fung, J. C. H., and Hunt, J. C. R.: 1995, 'Plume Dispersion through Large Groups of Obstacles - A Field Investigation', Atmos. Environ. 29, 3245–3256.Google Scholar
  5. DePaul, F. T. and Sheih, C. M.: 1986, 'Measurements ofWind Velocities in a Street Canyon', Atmos. Environ. 20, 455–459.Google Scholar
  6. Drivas, P. J. and Shair, F. H.: 1974, 'Probing the Air Flow within the Wake Downwind of a Building by Means of a Tracer Technique', Atmos. Environ. 8, 1165–1175.Google Scholar
  7. Ede, A. J.: 1967, An Introduction to Heat Transfer Principles and Calculations, Pergamon Press, Oxford, 287 pp.Google Scholar
  8. Finnigan, J. J. and Longstaff, R. A.: 1982, 'A Wind-Tunnel Model Study of Forced Convective Heat Transfer from Cylindrical Grain Storage Bins', J. Wind. Eng. Ind. Aerodyn. 10, 191–211.Google Scholar
  9. Goldstein, R. J. and Cho, H. H.: 1995, 'A Review ofMass TransferMeasurements Using Naphthalene Sublimation', Exp. Therm. Fluid Sci. 10, 416–434.Google Scholar
  10. Hewer, F. E. and Wood, N.: 1998, 'The Effective Roughness Length for Scalar Transfer in Neutral Conditions over Hilly Terrain', Quart. J. Roy. Meteorol. Soc. 124, 659–685.Google Scholar
  11. Hoydysh, W. G. and Dabberdt, W. F.: 1988, 'Kinematics and Dispersion Characteristics of Flows in Asymmetric Street Canyons', Atmos. Environ. 22, 2677–2689.Google Scholar
  12. Hoydysh, W. G., Griffiths, R. A., and Ogawa, Y.: 1974, 'A Scale Model Study of the Dispersion of Pollution in Street Canyons', APCA paper no. 74-157, in 67th Annual Meeting of the Air Pollution Control Association, Denver, Colorado.Google Scholar
  13. Hunter, L. J., Johnson, G. T., and Watson, I. D.: 1992, 'An Investigation of Three-Dimensional Characteristics of Flow Regimes within the Urban Canyon', Atmos. Environ. 26(B), 425–432.Google Scholar
  14. Johnson, G. T. and Hunter, L. J.: 1995, 'A Numerical Study of Dispersion of Passive Scalars in City Canyons', Boundary-Layer Meteorol. 75, 235–262.Google Scholar
  15. Johnson, W. B., Dabberdt, W. F., Ludwig, F. L., and Allen, R. J.: 1971, Field Study for Initial Evaluation of an Urban Diffusion Model for Carbon Monoxide, Stanford Research Institute Report, Contract CAPA-3-68(1-69).Google Scholar
  16. Kastner-Klein, P. and Plate, E. J.: 1999, 'Wind-Tunnel Study of Concentration Fields in Street Canyons', Atmos. Environ. 33, 3973–3979.Google Scholar
  17. Kastner-Klein, P., Fedorovich, E., and Rotach, M.W.: 2001, 'AWind Tunnel Study of Organised and Turbulent Air Motions in Urban Street Canyons', J. Wind Eng. Ind. Aerodyn. 89, 849–861.Google Scholar
  18. Kim, J.-J. and Baik, J.-J.: 1999, 'A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons', J. Appl. Meteorol. 38, 1249–1261.Google Scholar
  19. Lee, I. Y. and Park, H. M.: 1994, 'Parameterization of the Pollutant Transport and Dispersion in Urban Street Canyons', Atmos. Environ. 28, 2343–2349.Google Scholar
  20. Louka, P., Belcher, S. E., and Harrison, R. G.: 2000, 'Coupling between Air Flows in Streets and the Well-Developed Boundary Layer Aloft', Atmos. Environ. 34, 2613–2621.Google Scholar
  21. Meroney, R. N., Pavageau, M., Rafailidis, S., and Schatzmann, M.: 1996, 'Study of Line Source Characteristics for 2-D Physical Modelling of Pollutant Dispersion in Street Canyons', J. Wind. Eng. Ind. Aerodyn. 62, 37–56.Google Scholar
  22. Monteith, J. L. and Unsworth, M. H.: 1990, Principles of Environmental Physics, 2nd edn., Edward Arnold, London, 291 pp.Google Scholar
  23. Nicholson, S. E.: 1975, 'A Pollution Model for Street-level Air', Atmos. Environ. 9, 19–31.Google Scholar
  24. Oke, T. R.: 1987, Boundary Layer Climates, 2nd edn., Methuen, London and New York, 435 pp.Google Scholar
  25. Oke, T. R.: 1988, 'Street Design and Urban Canopy Layer Climate', Energy Bldg. 11, 103–113.Google Scholar
  26. Pavageau, M. and Schatzmann, M.: 1999, 'Wind Tunnel Measurements of Concentration Fluctuations in an Urban Street Canyon', Atmos. Environ. 33, 3961–3971.Google Scholar
  27. Rotach, M. W.: 1993, 'Turbulence Close to a Rough Urban Surface, Part I: Reynold's Stress', Boundary-Layer Meteorol. 65, 1–28.Google Scholar
  28. Rotach, M.W.: 1995, 'Profiles of Turbulence Statistics in and above an Urban Street Canyon', Atmos. Environ. 29, 1473–1486.Google Scholar
  29. Schmid, H. P. and Oke, T. R.: 1990, 'A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface-Layer over Patchy Terrain', Quart. J. Roy. Meteorol. Soc. 116(494A), 965–988.Google Scholar
  30. Sini, J.-F., Anquetin, S., and Mestayer, P. G.: 1996, 'Pollutant Dispersion and Thermal Effects in Urban Street Canyons', Atmos. Environ. 30, 2659–2677.Google Scholar
  31. Yamartino, R. J. and Wiegand, G.: 1986, 'Development and Evaluation of Simple Models for the Flow, Turbulence and Pollutant Fields within an Urban Street Canyon', Atmos. Environ. 20, 2137–2156.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of ReadingReadingU.K.
  2. 2.Department of MeteorologyUniversity of ReadingReadingU.K

Personalised recommendations