Biochemistry (Moscow)

, Volume 67, Issue 5, pp 511–519

Structure and Properties of Small Heat Shock Proteins (sHsp) and Their Interaction with Cytoskeleton Proteins

Article

Abstract

The modern classification of small heat shock proteins (sHsp) is presented and peculiarities of their primary structure and the mechanism of formation of oligomeric complexes are described. Data on phosphorylation of sHsp by different protein kinases are presented and the effect of phosphorylation on oligomeric state and chaperone activity of sHsp is discussed. Intracellular location of sHsp under normal and stress conditions is described and it is emphasized that under certain condition sHsp interact with different elements of cytoskeleton. The literature concerning the effect of sHsp on polymerization of actin in vitro is analyzed. An attempt is made to compare effects of sHsp on polymerization of actin in vitro with the results obtained on living cells under normal conditions and after heat shock or hormone action. The literature concerning possible effects of sHsp on cell motility is also analyzed.

heat shock proteins crystallins phosphorylation cytoskeleton actin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gething, M.-J. (ed.) (1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts, Oxford University Press, Oxford.Google Scholar
  2. 2.
    MacRae, T. H. (2000) Cellular and Molecular Life Sciences, 57, 899–913.Google Scholar
  3. 2a.
    Wang, K., and Spector, A. (2001) Eur. J. Biochem., 268, 6335–6345.Google Scholar
  4. 3.
    Ehrnsperger, M., Gräber, S., Gaestel, M., and Buchner, J. (1997) EMBO J., 16, 221–229.Google Scholar
  5. 4.
    Wang, X.-Y., Chen, X., Oh, H.-J., Repasky, E., Kazim, L., and Subjeck, J. (2000) FEBS Lett., 465, 98–102.Google Scholar
  6. 5.
    Berengian, A. R., Parfenova, M., and Mchaourab, H. S. (1999) J. Biol. Chem., 274, 6305–6314.Google Scholar
  7. 6.
    Benjamin, I. J., and McMillan, D. R. (1998) Circ. Res., 83, 117–132.Google Scholar
  8. 7.
    Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu, I. N., Yoshida, M., Nonaka, I., Ishiura, S., Arahata, K., and Ohno, S. (1998) J. Cell Biol., 140, 1113–1124.Google Scholar
  9. 8.
    Sugiyama, Y., Suzuki, A., Kishikawa, M., Akutsu, R., Hirose, T., Waye, M. M. Y., Tsui, S. K. W., Yoshida, S., and Ohno, S. (2000) J. Biol. Chem., 275, 1095–1104.Google Scholar
  10. 9.
    Smith, C. C., Yu, Y. X., Kulka, M., and Aurelian, L. (2000) J. Biol. Chem., 275, 25690–25699.Google Scholar
  11. 10.
    Benndorf, R., Sun, X., Gilmont, R. R., Biederman, K. J., Molloy, M. P., Goodmurphy, C. W., Cheng, H., Andrews, P. C., and Welsh, M. J. (2001) J. Biol. Chem., 276, 26753–26761.Google Scholar
  12. 11.
    Lambert, H., Charette, S., Bernier, A. F., Guimond, A., and Landry, J. (1999) J. Biol. Chem., 274, 9378–9385.Google Scholar
  13. 12.
    Feil, I. K., Malfois, M., Hedle, J., van der Zandt, H., and Svergun, D. I. (2001) J. Biol. Chem., 276, 12024–12029.Google Scholar
  14. 13.
    Kim, K. K., Kim, R., and Kim, S.-H. (1998) Nature (London), 394, 595–599.Google Scholar
  15. 13a.
    Van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C., and Vierling, E. (2001) Nature Struct. Biol., 8, 1025–1030.Google Scholar
  16. 14.
    Mchaourab, H. S., Berengian, A. R., and Koteiche, H. A. (1997) Biochemistry, 36, 14627–14634.Google Scholar
  17. 15.
    Bova, M. P., Mchaourab, H. S., Han, Y., and Fung, B. K.-K. (2000) J. Biol. Chem., 275, 1035–1042.Google Scholar
  18. 16.
    Ding, L., and Candido, E. P. (2000) J. Biol. Chem., 275, 9510–9517.Google Scholar
  19. 17.
    Leroux, M. R., Melki, R., Gordon, B., Batelier, G., and Candido, E. P. M. (1997) J. Biol. Chem., 272, 24646–24656.Google Scholar
  20. 18.
    Cooper, L. F., and Uoshima, K. (1994) J. Biol. Chem., 269, 7869–7873.Google Scholar
  21. 19.
    Guo, Z., and Cooper, L. (2000) Biochem. Biophys. Res. Commun., 270, 183–189.Google Scholar
  22. 20.
    Boelens, W. C., Croes, Y., de Ruwe, M., de Reu, L., and de Jong, W. W. (1998) J. Biol. Chem., 273, 28085–28090.Google Scholar
  23. 21.
    Lindner, R. A., Carver, J. A., Ehrnsperger, M., Buchner, J., Esposito, G., Behlke, J., Lutsch, G., Kotlyarov, A., and Gaestel, M. (2000) Eur. J. Biochem., 267, 1923–1932.Google Scholar
  24. 22.
    Woodrum, D. A., Brophy, C. M., Wingard, C. J., Beall, A., and Rasmussen, H. (1999) Am. J. Physiol. Heart Circ. Physiol., 277, H931-H939.Google Scholar
  25. 23.
    Beall, A., Epstein, A., Woodrum, D., and Brophy, C. M. (1999) Biochim. Biophys. Acta, 1449, 41–49.Google Scholar
  26. 24.
    Brophy, C. M., Dickinson, M., and Woodrum, D. (1999) J. Biol. Chem., 274, 6324–6329.Google Scholar
  27. 25.
    Rembold, C. M., Foster, D. B., Strauss, J. D., Wingard, C. J., and van Eyk, J. E. (2000) J. Physiol., 524, 865–878.Google Scholar
  28. 26.
    Landry, J., Lambert, H., Zhou, M., Lavoie, J. N., Hickey, E., Weber, L. A., and Anderson, C. W. (1992) J. Biol. Chem., 267, 794–803.Google Scholar
  29. 27.
    Larsen, J. K., Yamboliev, I. A., Weber, L. A., and Gerthoffer, W. T. (1997) Am. J. Physiol., 273, L930-L940.Google Scholar
  30. 28.
    Hedges, J. C., Dechert, M. A., Yamboliev, I. A., Martin, J. L., Hickey, E., Weber, L. A., and Gerthoffer, W. T. (1999) J. Biol. Chem., 274, 24211–24219.Google Scholar
  31. 29.
    Schafer, C., Ross, S., Bragado, M. J., Groblewski, G. E., Ernst, S. A., and Williams, J. A. (1998) J. Biol. Chem., 273, 24173–24180.Google Scholar
  32. 30.
    Schäfer, C., Clapp, P., Welsh, M. J., Benndorf, R., and Williams, J. A. (1999) Am. J. Physiol., 277, C1032-C1043.Google Scholar
  33. 31.
    Yamboliev, I. A., Hedges, J. C., Mutnick, J. L.-M., Adam, L. P., and Gerthoffer, W. T. (2000) Am. J. Physiol. Heart Circ. Physiol., 278, H1899-H1907.Google Scholar
  34. 32.
    Kato, K., Ito, H., Iwamoto, I., Lida, K., and Inaguma, Y. (2001) Cell Stress Chaperone, 6, 16–20.Google Scholar
  35. 33.
    Maizels, E. T., Peters, C. A., Kline, M., Cutler, R. E., Shanmugam, M., and Hunzicker-Dunn, M. (1998) Biochem. J., 332, 703–712.Google Scholar
  36. 34.
    Butt, E., Immler, D., Meyer, H. E., Kotlyarov, A., Laaß, K., and Gaestel, M. (2001) J. Biol. Chem., 276, 7108–7113.Google Scholar
  37. 35.
    Gaestel, M., Benndorf, R., Hayess, K., Priemer, E., and Engel, K. (1992) J. Biol. Chem., 267, 21607–21611.Google Scholar
  38. 36.
    Ito, H., Kamei, K., Iwamoto, I., Inaguma, Y., Nohara, D., and Kato, K. (2001) J. Biol. Chem., 276, 5346–5352.Google Scholar
  39. 37.
    Rogalla, T., Ehrnsperger, M., Preville, X., Kotlyarov, A., Lutsch, G., Ducasse, C., Paul, C., Wieske, M., Arrigo, A. P., Buchner, J., and Gaestel, M. (1999) J. Biol. Chem., 274, 18947–18956.Google Scholar
  40. 38.
    Ehrnsperger, M., Lilie, H., Gaestel, M., and Buchner, J. (1999) J. Biol. Chem., 274, 14867–14874.Google Scholar
  41. 39.
    Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., Chen, S., Saibil, H., and Buchner, J. (1999) EMBO J., 18, 6744–6751.Google Scholar
  42. 40.
    Preville, X., Schultz, H., Knauf, U., and Arrigo, A. P. (1998) J. Cell Biochem., 69, 436–452.Google Scholar
  43. 41.
    Preville, X., Gaestel, M., and Arrigo, A. P. (1998) Cell Stress Chaperones, 3, 177–187.Google Scholar
  44. 42.
    Miron, T., Wilchek, M., and Geiger, B. (1988) Eur. J. Biochem., 178, 543–553.Google Scholar
  45. 43.
    Wieske, M., Benndorf, R., Behlke, J., Dolling, R., Grelle, G., Bielka, H., and Lutsch, G. (2001) Eur. J. Biochem., 268, 2083–2090.Google Scholar
  46. 44.
    Benndorf, R., Hayeß, K., Ryazantsev, S., Wieske, M., Behlke, J., and Lutsch, G. (1994) J. Biol. Chem., 269 Google Scholar
  47. 45.
    Perng, M. D., Cairns, L., van den Ijssel, P., Prescott, A., Hutcheson, A. M., and Quinlan, R. A. (1999) J. Cell Sci., 112, 2099–2112.Google Scholar
  48. 46.
    Miron, T., Vancompernolle, K., Vandekerckhove, J., Wilchek, M., and Geiger, B. (1991) J. Cell Biol., 114, 255–261.Google Scholar
  49. 47.
    Loktionova, S. A., Ilyinskaya, O. P., Gabai, V. L., and Kabakov, A. E. (1996) FEBS Lett., 392, 100–104.Google Scholar
  50. 48.
    Loktionova, S. A., and Kabakov, A. E. (1998) FEBS Lett., 433, 294–300.Google Scholar
  51. 49.
    Wang, P., and Bitar, K. (1998) Am. J. Physiol., 275, G1454-G1462.Google Scholar
  52. 50.
    Ibitayo, A. I., Sladick, J., Tuteja, S., Louis-Jacques, O., Yamada, H., Groblewski, G., Welsh, M., and Bitar, K. (1999) Am. J. Physiol., 277, G445-G454.Google Scholar
  53. 51.
    Muller, E., Burger-Kentischer, A., Neuhofer, W., Frank, M. L., Marz, J., Thurau, K., and Beck, F. X. (1999) J. Cell Physiol., 181, 462–469.Google Scholar
  54. 52.
    Lavoie, J. N., Hickey, E., Weber, L. A., and Landry, J. (1993) J. Biol. Chem., 268, 24210–24214.Google Scholar
  55. 53.
    Lavoie, J. N., Lambert, H., Hickey, E., Weber, L. A., and Landry, J. (1995) Mol. Cell. Biol., 15, 505–516.Google Scholar
  56. 54.
    Kato, K., Goto, S., Inaguma, Y., Hasegawa, K., Morishita, R., and Asano, T. (1994) J. Biol. Chem., 269, 15302–15309.Google Scholar
  57. 55.
    Pietrowicz, R. S., and Levin, E. G. (1997) J. Biol. Chem., 272, 25920–25927.Google Scholar
  58. 56.
    Huot, J., Houle, F., Rousseau, S., Deschesnes, R. G., Shah, G. M., and Landry, J. (1996) J. Cell Biol., 143, 1361–1373.Google Scholar
  59. 57.
    Huot, J., Houle, F., Spitz, D. R., and Landry, J. (1996) Cancer Res., 56, 273–279.Google Scholar
  60. 58.
    Lavoie, J. N., Gingras-Breton, G., Tanguay, R. M., and Landry, J. (1993) J. Biol. Chem., 268, 3420–3429.Google Scholar
  61. 59.
    Pietrowicz, R. S., Martin, J. L., Dillman, W. H., and Levin, E. G. (1997) J. Biol. Chem., 272, 7042–7047.Google Scholar
  62. 60.
    Ehrnsperger, M., Hergersberg, C., Wienhues, U., Nicht, A., and Buchner, J. (1998) Analyt. Biochem., 259, 218–225.Google Scholar
  63. 61.
    Hino, M., Kurogi, K., Okubo, M. A., Murata-Hori, M., and Hosoya, H. (2000) Biochem. Biophys. Res. Commun., 271, 164–169.Google Scholar
  64. 62.
    Beall, A. C., Kato, K., Goldenting, J. R., Rasmussen, H., and Brophy, C. M. (1997) J. Biol. Chem., 272, 11283–11287.Google Scholar
  65. 63.
    Beall, A., Bagwall, D., Woodrum, D., Stoming, T. A., Kato, K., Suzuki, A., Rasmussen, H., and Brophy, C. M. (1999) J. Biol. Chem., 274, 11344–11351.Google Scholar
  66. 64.
    Clark, J. I., and Muchowski, P. J. (2000) Curr. Opin. Struct. Biol., 10, 52–59.Google Scholar
  67. 65.
    Gerthoffer, W. T., and Gunst, S. J. (2001) J. Appl. Physiol., 91, 963–972.Google Scholar
  68. 66.
    Sugden, P. H., and Clerk, A. (1998) Cir. Res., 83, 342–352.Google Scholar
  69. 67.
    Narberhaus, F. (2002) Microbiol. Mol. Biol. Rev., 66, 64–93.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • N. B. Gusev
    • 1
  • N. V. Bogatcheva
    • 1
  • S. B. Marston
    • 2
  1. 1.Department of Biochemistry, School of Biology and Department of Biochemistry, School of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Cardiac Medicine, National Heart and Lung InstituteImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations